[1]
|
Keller, H.B. (1987) Numerical Methods in Bifurcation Problems. Springer Verlag/Tata Institute for Fundamental Research, Berlin.
|
[2]
|
Hadamard, J. (1893) Etude sur les propriétés des fonctions entiéres et en particulier d’une fonction. Journal de Mathématiques Pures et Appliquées, 9, 171-216.
|
[3]
|
von Mangoldt, H. (1985) Zu Riemann’s Abhandlung “Über die Anzahl der Priemzahlen unter einer gegebenen Grösse”. Journal für die Reine und Angewandte Mathematik, 114, 255-305.
|
[4]
|
Titchmarsh, E.C. (1986) The Theory of the Riemann Zeta-Function. 2nd Edition, Oxford.
|
[5]
|
Lehmer, D.H. (1988) The Sum of Like Powers of the Zeros of the Riemann Zeta Function. Mathematics of Computation, 50, 265-273. http://dx.doi.org/10.1090/S0025-5718-1988-0917834-X
|
[6]
|
Dusart, P. (1999) Inégalités explicites pour Ψ(X), θ(X), π(X) et les nombres premiers. Comptes Rendus Mathematiques (Mathematical Reports) des l’Academie des Sciences, 21, 53-59.
|
[7]
|
Keiper, J.B. (1992) Power Series Expansions of Riemann’s ζ Function. Mathematics of Computation, 58, 765-773.
|
[8]
|
Ford, K. (2002) Zero-Free Regions for the Riemann Zeta Function. Number Theory for the Millenium, 2, 25-26.
|
[9]
|
Borwein, P., Choi, S., Rooney, B. and Weirathmueller, A. (2006) The Riemann Hypothesis. Springer Verlag, Berlin.
|
[10]
|
Littlewood, J.E. (1922) Researches in the Theory of the Riemann ζ-Function. Proceedings of the London Mathematical Society, Series 2, 20, 22-27.
|
[11]
|
Littlewood, J.E. (1926) On the Riemann Zeta-Function. Proceedings of the London Mathematical Society, Series 2, 24, 175-201. http://dx.doi.org/10.1112/plms/s2-24.1.175
|
[12]
|
Littlewood, J.E. (1928) Mathematical Notes (5): On the Function 1/ζ(1+ti). Proceedings of the London Mathematical Society, Series 2, 27, 349-357. http://dx.doi.org/10.1112/plms/s2-27.1.349
|
[13]
|
Wintner, A. (1941) On the Asymptotic Behavior of the Riemann Zeta-Function on the Line . American Journal of Mathematics, 63, 575-580. http://dx.doi.org/10.2307/2371370
|
[14]
|
Richert, H.E. (1967) Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1. Mathematische Annalen, 169, 97-101. http://dx.doi.org/10.1007/BF01399533
|
[15]
|
Cheng, Y. (1999) An Explicit Upper Bound for the Riemann Zeta Function near the Line σ = 1. Rocky Mountain Journal of Mathematics, 29, 115-140. http://dx.doi.org/10.1216/rmjm/1181071682
|