Notes on the Variety of Ternary Algebras ()
Aldo V. Figallo,
Claudia M. Gomes,
Lucía S. Sarmiento,
Mario E. Videla
Departamento de Matemática, Universidad Nacional de San Juan, San Juan, Argentina.
Instituto de Ciencias Básicas, Universidad Nacional de San Juan, San Juan, Argentina.
DOI: 10.4236/apm.2014.49057
PDF
HTML
2,768
Downloads
3,606
Views
Citations
Abstract
In this work we review the class T of ternary algebras introduced by J. A. Brzozowski and C. J. Serger in [1]. We determine properties of the congruence lattice of a ternary algebra A. The most important result refers to the construction of the free ternary algebra on a poset. In particular, we describe the poset of the join irreducible elements of the free ternary algebra with two free generators.
Share and Cite:
Figallo, A. , Gomes, C. , Sarmiento, L. and Videla, M. (2014) Notes on the Variety of Ternary Algebras.
Advances in Pure Mathematics,
4, 506-512. doi:
10.4236/apm.2014.49057.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Brzozowski, J.A. and Serger, C.J. (1995) Asynchronous Circuits. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-1-4612-4210-9
|
[2]
|
Sankappanavar, H.P. (1980) A Characterization of Principal Congruences of De Morgan Algebras and Its Applications. In: Arruda, A.I., Chuaqui, R. and da Costa, N.C.A., Eds., Mathematical Logic in Latin American, North-Holland Publishing Company, Amsterdam, 341-349.
|
[3]
|
Day, A. (1971) A Note on the Congruence Extension Property. Algebra Universalis, 1, 234-235. http://dx.doi.org/10.1007/BF02944983
|
[4]
|
Blok, W.J. and Pigozzi, D. (1982) On the Structure of Varietes with Equationally Definable Principal Congruences I. Algebra Universalis, 15, 195-227. http://dx.doi.org/10.1007/BF02483723
|
[5]
|
Kholer, P. and Pigozzi, D. (1980) Varietes with Equationally Definable Principal Congruences. Algebra Universalis, 11, 213-219. http://dx.doi.org/10.1007/BF02483100
|
[6]
|
Dilworth, R.P. (1945) Lattices with Unique Complements. Transactions of the American Mathematical Society, 57, 123-154. http://dx.doi.org/10.1090/S0002-9947-1945-0012263-6
|
[7]
|
Balbes, R. (2000) Free Ternary Algebras. International Journal of Algebra and Computation, 10, 739-749. http://dx.doi.org/10.1142/S0218196700000340
|
[8]
|
Figallo Jr., A. and Ziliani, A. (2011) Free Algebras over a Poset in Varieties. Communications of the Korean Mathematical Society, 26, 543-549.
|