Notes on the Variety of Ternary Algebras


In this work we review the class T of ternary algebras introduced by J. A. Brzozowski and C. J. Serger in [1]. We determine properties of the congruence lattice of a ternary algebra A. The most important result refers to the construction of the free ternary algebra on a poset. In particular, we describe the poset of the join irreducible elements of the free ternary algebra with two free generators.

Share and Cite:

Figallo, A. , Gomes, C. , Sarmiento, L. and Videla, M. (2014) Notes on the Variety of Ternary Algebras. Advances in Pure Mathematics, 4, 506-512. doi: 10.4236/apm.2014.49057.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Brzozowski, J.A. and Serger, C.J. (1995) Asynchronous Circuits. Springer-Verlag, Berlin.
[2] Sankappanavar, H.P. (1980) A Characterization of Principal Congruences of De Morgan Algebras and Its Applications. In: Arruda, A.I., Chuaqui, R. and da Costa, N.C.A., Eds., Mathematical Logic in Latin American, North-Holland Publishing Company, Amsterdam, 341-349.
[3] Day, A. (1971) A Note on the Congruence Extension Property. Algebra Universalis, 1, 234-235.
[4] Blok, W.J. and Pigozzi, D. (1982) On the Structure of Varietes with Equationally Definable Principal Congruences I. Algebra Universalis, 15, 195-227.
[5] Kholer, P. and Pigozzi, D. (1980) Varietes with Equationally Definable Principal Congruences. Algebra Universalis, 11, 213-219.
[6] Dilworth, R.P. (1945) Lattices with Unique Complements. Transactions of the American Mathematical Society, 57, 123-154.
[7] Balbes, R. (2000) Free Ternary Algebras. International Journal of Algebra and Computation, 10, 739-749.
[8] Figallo Jr., A. and Ziliani, A. (2011) Free Algebras over a Poset in Varieties. Communications of the Korean Mathematical Society, 26, 543-549.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.