Compound Means and Fast Computation of Radicals

Abstract

In last decades, several algorithms were developed for fast evaluation of some elementary functions with very large arguments, for example for multiplication of million-digit integers. The present paper introduces a new fast iterative method for computing values  with high accuracy, for fixed  and . The method is based on compound means and Padé approximations.

Share and Cite:

Šustek, J. (2014) Compound Means and Fast Computation of Radicals. Applied Mathematics, 5, 2493-2517. doi: 10.4236/am.2014.516241.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Householder, A.S. (1970) The Numerical Treatment of a Single Nonlinear Equation. McGraw-Hill, New York.
[2] Hardy, G.H., Littlewood, J.E. and Pólya, G. (1952) Inequalities. Cambridge University Press, Cambridge.
[3] Borwein, J.M. and Borwein, P.B. (1987) Pi and the AGM. John Wiley & Sons, Hoboken.
[4] Gauss, C.F. (1866) Werke. Göttingen.
[5] Matkowski, J. (1999) Iterations of Mean-Type Mappings and Invariant Means. Annales Mathematicae Silesianae, 12, 211-226.
[6] Karatsuba, A. and Ofman, Yu. (1962) Umnozhenie mnogoznachnykh chisel na avtomatakh. Doklady Akademii nauk SSSR, 145, 293-294.
[7] Schönhage, A. and Strassen, V. (1971) Schnelle Multiplikation Großer Zahlen. Computing, 7, 281-292.
http://dx.doi.org/10.1007/BF02242355
[8] Fürer, M. (2007) Faster Integer Multiplication. Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, 11-13 June 2007, 55-67.
[9] Brent, R.P. (1975) Multiple-Precision Zero-Finding Methods and the Complexity of Elementary Function Evaluation. In: Traub, J.F., Ed., Analytic Computational Complexity, Academic Press, New York, 151-176.
[10] Knuth, D.E. (1998) The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Addison-Wesley, Boston.
[11] Brezina, K. (2012) Smísené Pruměry. Master Thesis, University of Ostrava, Ostrava.
[12] Karatsuba, A. (1995) The Complexity of Computations. Proceedings of the Steklov Institute of Mathematics, 211, 169-183.
[13] Pan, V.Ya. (1961) Nekotorye skhemy dlya vychisleniya znacheni polinomov s veshchestvennymi koeffitsientami. Problemy Kibernetiki, 5, 17-29.
[14] Wilf, H. and Zeilberger, D. (1990) Rational Functions Certify Combinatorial Identities. Journal of the American Mathematical Society, 3, 147-158.
http://dx.doi.org/10.1090/S0894-0347-1990-1007910-7
[15] Jarník, V. (1984) Diferenciální pocet 1. Academia, Praha.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.