Effect of Dissolved Oxygen and Inoculum Concentration on Xylose Reductase Production from Candida guilliermondii Using Sugarcane Bagasse Hemicellulosic Hydrolysate


This work evaluated the effect of dissolved oxygen and the initial inoculum concentration on xylose reductase (XR) production by Candida guilliermondii from sugarcane bagasse hemicellulosic hydrolysate. Both the parameters were studied under an experimental design 22 with triplicate at central point. The statistical analysis of the results indicated a significant negative effect on XR production from the variable inoculum. The variable dissolved oxygen also showed a negative effect on XR production. We found the maximum enzyme activity (2.5 U?mg?1) when both the factors were applied at their lowest levels. The yeast showed to be potentially capable for xylose reductase production when sugarcane bagasse hemicellulosic hydrolysate was used as carbon source. Also, the results presented important information for further optimization of xylose reductase attainment.

Share and Cite:

T. Santos Milessi, A. Chandel, R. Freitas Branco and S. da Silva, "Effect of Dissolved Oxygen and Inoculum Concentration on Xylose Reductase Production from Candida guilliermondii Using Sugarcane Bagasse Hemicellulosic Hydrolysate," Food and Nutrition Sciences, Vol. 2 No. 3, 2011, pp. 235-240. doi: 10.4236/fns.2011.23033.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Fernandes, M. G. Tuohy and P. G. Murray, “Xylose Reductase from the Thermophilic Fungus Talaromyces Emersonii: Cloning and Heterologous Expression of the Native Gene (Texr) and a Double Mutant (TexrK271R + N273D) with Altered Coenzyme Specificity,” Journal of Bioscience, Vol. 34, No. 6, 2009, pp. 881-890. doi:10.1007/s12038-009-0102-7
[2] A. K. Chandel, M. L. Narasu, R. Rudravaram, R. Pogaku and L. V. Rao, “Bioconversion of De-Oiled Rice Bran (DORB) Hemicellulosic Hydrolysate into Ethanol by Pichia Stipitis NCM3499 under Optimized Conditions,” International Journal of Food Engineering, Vol. 5, No. 1, 2009, p. 8. doi:10.2202/1556-3758.1453
[3] S. M. A. Rosa, M. G. A. Felipe, S. S. Silva and M. Vitolo, “Xylose Reductase Production by Candida guilliermondii,” Applied Biochemistry and Biotechnology, Vol. 70, No. 72, 1998, pp. 127-135. doi:10.1007/BF02920130
[4] O. V. Dmytruk, K. V. Dmytruk, C. A. Abbas, A. Y. Voronovsky and A. A. Sibirny, “Engineering of Xylose Reductase and Overexpression of Xylitol Dehydrogenase and Xylulokinase Improves Xylose Alcoholic Fermentation in the Thermotolerant Yeast Hansenula polymorpha,” Microbial Cell Factories, Vol. 7, No. 21, 2008, p. 21. doi:10.1186/1475-2859-7-21
[5] N. J. Alexander, “Temperature Sensitivity of the Induction of Xylose Reductase in Pachysolen tannophilus,” Biotechnology and Bioengineering, Vol. 27, No. 12, 1985, pp. 1739-1744. doi:10.1002/bit.260271218
[6] R. F. Branco, J. C. Santos, A. Pessoa Jr. and S. S. Silva, “Profiles of Xylose Reductase, Xylitol Dehydrogenase and Xylitol Production under Different Oxygen Transfer Volumetric Coefficient Values,” Journal of Chemical technology and biotechnology, Vol. 84, No. 3, 2009, pp. 326- 330. doi:10.1002/jctb.2042
[7] R. Woodyer, M. Simurdiak, W. A. V. D. Donk and H. Zhao, “Heterologous Expression, Purification and Characterization of a Highly Active Xylose Reductase from Neurospora Crassa,” Applied and Enviromental Microbiology, Vol. 71, No. 3, 2004, pp. 1642-1647. doi:10.1128/AEM.71.3.1642-1647.2005
[8] O. Bengtsson, B. Hahn-H?gerdal and M. F. Gorwa-Grauslund, “Xylose Reductase from Pichia stipitis with Altered Coenzyme Preference Improves Ethanolic Xylose Fermentation by Recombinant Saccharomyces cerevisae,” Biotechnology for Biofuels, Vol. 2, No. 9, 2009, p. 10.
[9] D. B. Gurpilhares, A. Pessoa Jr. and I. C. Roberto, “Glucose-6-phosphate Dehydrogenase and Xylitol Production by Candida guilliermondii FTI 20037 Using Statistical Experimental Design,” Process Biochemistry, Vol. 41, No. 3, 2005, pp. 631-637. doi:10.1016/j.procbio.2005.08.008
[10] J. M. Marton, M. G. A. Felipe, J. B. A. e Silva and A. Pessoa Júnior, “Evaluation of the Activated Charcoals and Adsorption Conditions Used in the Treatment of Sugarcane Bagasse Hydrolysate for Xylitol Production,” Brazilian Journal of Chemical Engineering, Vol. 23, No. 1, 2006, pp. 9-21. doi:10.1590/S0104-66322006000100002
[11] J. P. Mikkola, T. Salmi, A. Villela, H. Vainio, P. M?ki-Arvela, A. Kalantar, T. Ollonqvist, J. V?yrynem and R. Sj?holm, “Hydrogenation of Xylose to Xylitol on Sponge Nickel Catalyst—A Study of the Process and Catalyst Deactivation Kinetics,” Brazilian Journal of Chemical Engineering, Vol. 20, No. 3, 2003, pp. 263- 271. doi:10.1590/S0104-66322003000300006
[12] M. F. Gliemmo, A. M. Calvin, O. Tamasib, L. N. Gerschensona and C. A. Camposa, “Interactions between Aspartame, Glucose and Xylitol in Aqueous Systems Containing Potassium Sorbate,” LWT—Food Science and Technology, Vol. 41, No. 4, 2008, pp. 611-619.
[13] E. Winkelhausen and S. Kusmanova, “Microbial Conversion of D-Xylose to Xylitol,” Journal of Fermentation and Bioengineering, Vol. 86, No. 1, 1998, pp. 1-14. doi:10.1016/S0922-338X(98)80026-3
[14] R. S. Prakasham, R. S. Rao and P. J. Hobbs, “Current Trends in Biotechnological Production of Xylitol and Future Prospects,” Current Trends in Biotechnology and Pharmacy, Vol. 3, No. 1, 2009, pp. 8-36.
[15] I. C. Roberto, S. Sato and I. M. Mancilha, “Effect of Inoculum Level on Xylitol Production from Rice Straw Hemicellulose Hydrolysate by Candida guilliermondii,” Journal of Industrial Microbiology, Vol. 16, No. 16, 1996, pp. 348-350. doi:10.1007/BF01570113
[16] D. D. V. Silva and M. G. A. Felipe, “Effect of Glucose:Xylose Ratio on Xylose Reductase and Xylitol Dehydrogenase Activities from Candida guilliermondii in Sugarcane Bagasse Hydrolysate,” Journal of Chemical Technology and Biotechnology, Vol. 81, No. 7, 2006, pp. 1295-1300.
[17] S. Kim, J. Kim and D. Oh, “Improvement of Xylitol Production by Controlling Oxygen Supply in Candida parapsilosis,” Journal of Fermentation and Bioengineering, Vol. 83, No. 3, 1997, pp. 267-270. doi:10.1016/S0922-338X(97)80990-7
[18] R. F. Branco, J. C. Santos, L. Y. Murakami, S. I. Mussato, G. Dragone and S. S. Silva, “Xylitol Production in a Bubble Column Bioreactor: Influence of the Aeration Rate and Immobilized System Concentration,” Process Biochemistry, Vol. 42, No. 2, 2007, pp. 258-262.
[19] D. D. V. Silva, M. G. A. Felipe, I. M. Mancilha and S. S. Silva, “Evaluation of Inoculum of Candida guilliermondii Grown in Presence of Glucose on Xylose Reductase and Xylitol Dehydrogenase Activities and Xylitol Production during Batch Fermentation of Sugarcane Bagasse Fermentation,” Applied Biochemistry and Biotechnnology, Vol. 121-124, No. 1-3, 2005, pp. 427-437.doi:10.1385/ABAB:121:1-3:0427
[20] L. A. Alves, M. G. A. Felipe, J. B. A. Silva, S. S. Silva and A. M. R. Prata, “Pre-Treatment of Sugarcane Bagasse Hemicellulose Hydrolisate for Xylitol Production by Candida guilliermondii,” Applied Biochemistry and Biotechnology, Vol. 70-72, No. 1, 1998, pp. 89-98. doi:10.1007/BF02920126
[21] D. B. Gurpilhares, F. A. Hasmanna, A. Pessoa Jr. and I. C. Roberto, “Optimization of Glucose-6-phosphate Dehydrogenase Releasing from Candida guilliermondii by Disruption with Glass Beads,” Enzyme and Microbial Technology, Vol. 39, No. 4, 2006, pp. 591-595. doi:10.1016/j.enzmictec.2005.11.018
[22] S. I. Mussatto and I. C. Roberto, “Establishment of the Optimum Initial Xylose Concentration and Nutritional Supplementation of Brewer’s Spent Grain Hydrolysate for Xylitol Production by Candida guilliermondii,” Process Biochemistry, Vol. 43, No. 5, 2008, pp. 540-546. doi:10.1016/j.procbio.2008.01.013

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.