[1]
|
Chow, P.K.H., Ng, R.T.H. and Ogden, B.E. (2008) Using Animal Models in Biomedical Research: A Primer for the Investigator. World Scientific, Hackensack.
|
[2]
|
Howells, D.W., Sena, E.S., Porritt, M.J., Rewell, S., et al. (2008) Can Animal Models of Disease Reliably Inform Human Studies? PLoS Medecine, 7, e1000245
|
[3]
|
Belvisi, M.G. and Bolser, D.C. (2002) Summary: Animal Models for Cough. Pulmonary Pharmacology & Therapeutics, 15, 249-250. http://dx.doi.org/10.1006/pupt.2002.0349
|
[4]
|
Mokry, J., Joskova, M., Mokra, D., Christensen, I. and Nosalova, G. (2013) Effects of Selective Inhibition of PDE4 and PDE7 on Airway Reactivity and Cough in Healthy and Ovalbumin-Sensitized Guinea Pigs. Advances in Experimental Medicine and Biology, 756, 57-64. http://dx.doi.org/10.1007/978-94-007-4549-0_8
|
[5]
|
Sutovska, M., Adamkov, M., Kocmalova, M., Mesarosova, L., Oravec, M. and Franova, S. (2013) CRAC Ion Channels and Airway Defense Reflexes in Experimental Allergic Inflammation. Advances in Experimental Medicine and Biology, 756, 39-48. http://dx.doi.org/10.1007/978-94-007-4549-0_6
|
[6]
|
Hori, A., Fujimura, M., Ohkura, N. and Tokuda, A. (2011) Involvement of Nitric Oxide (NO) in Cough Reflex Sensitivity between Non-Sensitized and OVA-Sensitized Guinea Pigs. Cough, 7, 5. http://dx.doi.org/10.1186/1745-9974-7-5
|
[7]
|
Brozmanova, M., Plevkova, J., Tatar, M. and Kollarik, M. (2008) Cough Reflex Sensitivity Is Increased in the Guinea Pig Model of Allergic Rhinitis. Journal of Physiology and Pharmacology, 59, 153-161.
|
[8]
|
Kumar, R.K., Herbert, C. and Foster, P.S. (2008) The “Classical” Ovalbumin Challenge Model of Asthma in Mice. Current Drug Targets, 9, 485-494. http://dx.doi.org/10.2174/138945008784533561
|
[9]
|
Nials, A.T. and Uddin, S. (2008) Mouse Models of Allergic Asthma: Acute and Chronic Allergen Challenge. Disease Models Mechanisms, 1, 213-220 http://dx.doi.org/10.1242/dmm.000323
|
[10]
|
Birrell, M.A., Van Oosterhout, A.J.M. and Belvisi, M.G. (2010) Do the Current House Dust Mite-Driven Models Really Mimic Allergic Asthma? European Respiratory Journal, 36, 1220-1223 http://dx.doi.org/10.1183/09031936.00069110
|
[11]
|
An, S., Chen, L., Long, C., Liu, X., Xu, X., Lu, X., Rong, M., Liu, Z. and Lai, R. (2013) Dermatophagoides farinae Allergens Diversity Identification by Proteomics. Molecular & Cellular Proteomics, 12, 1818-1828. http://dx.doi.org/10.1074/mcp.M112.027136
|
[12]
|
Thomas, W.R. and Smith, W. (1998) House-Dust-Mite Allergens. Allergy, 53, 821-832. http://dx.doi.org/10.1111/j.1398-9995.1998.tb03987.x
|
[13]
|
Gregory, L.G. and Lloyd, C.M. (2011) Orchestrating House Dust Mite-Associated Allergy in the Lung. Trends in Immunology, 32, 402-411. http://dx.doi.org/10.1016/j.it.2011.06.006
|
[14]
|
Barrett, N.A., et al. (2009) Dectin-2 Recognition of House Dust Mite Triggers Cysteinyl Leukotriene Generation by Dendritic Cells. The Journal of Immunology, 182, 1119-1128. http://dx.doi.org/10.4049/jimmunol.182.2.1119
|
[15]
|
Hammad, H. and Lambrecht, B.N. (2008) Dendritic Cells and Epithelial Cells: Linking Innate and Adaptive Immunity in Asthma. Nature Reviews Immunology, 8, 193-204. http://dx.doi.org/10.1038/nri2275
|
[16]
|
Lambrecht, B.N. and Hammad, H. (2009) Biology of Lung Dendritic Cells at the Origin of Asthma. Immunity, 31, 412- 424. http://dx.doi.org/10.1016/j.immuni.2009.08.008
|
[17]
|
Hammad, H., et al. (2010) Inflammatory Dendritic Cells—Not Basophils—Are Necessary and Sufficient for Induction of Th2 Immunity to Inhaled House Dust Mite Allergen. The Journal of Experimental Medicine, 207, 2097-2111. http://dx.doi.org/10.1084/jem.20101563
|
[18]
|
Chapman, M.D., et al. (2007) Proteases as Th2 Adjuvants. Current Allergy and Asthma Reports, 7, 363-367. http://dx.doi.org/10.1007/s11882-007-0055-6
|
[19]
|
Stewart, G.A., et al. (1994) Immunobiology of the Serine Protease Allergens from House Dust Mites. American Journal of Industrial Medicine, 25, 105-107. http://dx.doi.org/10.1002/ajim.4700250128
|
[20]
|
Wan, H., et al. (1999) Der p 1 Facilitates Transepithelial Allergen Delivery by Disruption of Tight Junctions. Journal of Clinical Investigation, 104, 123-133. http://dx.doi.org/10.1172/JCI5844
|
[21]
|
Wan, H., et al. (2001) The Transmembrane Protein Occludin of Epithelial Tight Junctions Is a Functional Target for Serine Peptidases from Faecal Pellets of Dermatophagoides Pteronyssinus. Clinical & Experimental Allergy, 31, 279- 294. http://dx.doi.org/10.1046/j.1365-2222.2001.00970.x
|
[22]
|
Turi, G.J., et al. (2011) The Effects of Inhaled House Dust Mite on Airway Barrier Function and Sensitivity to Inhaled Methacholine in Mice. American Journal of Physiology-Lung Cellular and Molecular Physiology, 300, L185-L190. http://dx.doi.org/10.1152/ajplung.00271.2010
|
[23]
|
Bhure, U.N., et al. (2009) Lung Epithelial Permeability and Inhaled Furosemide: Added Dimensions in Asthmatics. Annals of Nuclear Medicine, 23, 549-557. http://dx.doi.org/10.1007/s12149-009-0275-z
|
[24]
|
Reed, C.E. and Kita, H. (2004) The Role of Protease Activation of Inflammation in Allergic Respiratory Diseases. Journal of Allergy and Clinical Immunology, 114, 997-1008. http://dx.doi.org/10.1016/j.jaci.2004.07.060
|
[25]
|
Valerio, C.R., et al. (2005) Bacterial 16S Ribosomal DNA in House Dust Mite Cultures. Journal of Allergy and Clinical Immunology, 116, 1296-1300. http://dx.doi.org/10.1016/j.jaci.2005.09.046
|
[26]
|
Hammad, H., et al. (2009) House Dust Mite Allergen Induces Asthma via Toll-Like Receptor 4 Triggering of Airway Structural Cells. Nature Medicine, 15, 410-416. http://dx.doi.org/10.1038/nm.1946
|
[27]
|
Phipps, S., et al. (2009) Toll/IL-1 Signaling Is Critical for House Dust Mite-Specific Helper T Cell Type 2 and Type 17 [Corrected] Responses. American Journal of Respiratory and Critical Care Medicine, 179, 883-893. http://dx.doi.org/10.1164/rccm.200806-974OC
|
[28]
|
Hongjia, L., et al. (2010) House Dust Mite Regulate the Lung Inflammation of Asthmatic Mice through TLR4 Pathway in Airway Epithelial Cells. Cell Biochemistry and Function, 28, 597-603. http://dx.doi.org/10.1002/cbf.1697
|
[29]
|
Allergen Nomenclature: IUIS Allergen Nomenclature Sub-Committee. http://www.allergen.org
|
[30]
|
Koff, J.L., et al. (2008) Multiple TLRs Activate EGFR via a Signaling Cascade to Produce Innate Immune Responses in Airway Epithelium. American Journal of Physiology-Lung Cellular and Molecular Physiology, 294, L1068-L1075. http://dx.doi.org/10.1152/ajplung.00025.2008
|
[31]
|
Hay, D.B., et al. (1992) How Relevant Are House Dust Mite-Fungal Interactions in Laboratory Culture to the Natural Dust System? Experimental and Applied Acarology, 16, 37-47. http://dx.doi.org/10.1007/BF01201491
|
[32]
|
Nathan, A.T., et al. (2009) Innate Immune Responses of Airway Epithelium to House Dust Mite Are Mediated through Beta-Glucan-Dependent Pathways. Journal of Allergy and Clinical Immunology, 123, 612-618. http://dx.doi.org/10.1016/j.jaci.2008.12.006
|
[33]
|
Lee, C.G., et al. (2011) Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury. Annual Review of Physiology, 73, 479-501. http://dx.doi.org/10.1146/annurev-physiol-012110-142250
|
[34]
|
Reese, T.A., et al. (2007) Chitin Induces Accumulation in Tissue of Innate Immune Cells Associated with Allergy. Nature, 447, 92-96. http://dx.doi.org/10.1038/nature05746
|
[35]
|
O’Neil, S.E., et al. (2006) The Chitinase Allergens Der p 15 and Der p 18 from Dermatophagoides pteronyssinus. Clinical & Experimental Allergy, 36, 831-839. http://dx.doi.org/10.1111/j.1365-2222.2006.02497.x
|
[36]
|
Wagner, J.G. and Harkema, J.R. (2012) From Mouse to Man: Translational Value of Animal Models of Allergic Rhinitis. In: Kowalski, M., Ed., Allergic Rhinitis, InTech, 7-11. http://dx.doi.org/10.5772/25352
|
[37]
|
Shin, Y.S., Takeda, K. and Gelfand, E.W. (2009) Understanding Asthma Using Animal Models. Allergy, Asthma Immunology Research, 1, 10-18. http://dx.doi.org/10.4168/aair.2009.1.1.10
|
[38]
|
Canning, B.J. and Chou, Y.L. (2009) Cough Sensors. I. Physiological and Pharmacological Properties of the Afferent Nerves Regulating Cough. Handbook of Experimental Pharmacology, 187, 23-47. http://dx.doi.org/10.1007/978-3-540-79842-2_2
|
[39]
|
Mazzone, S.B. and Canning, B.J. (2002) Synergistic Interactions between Airway Afferent Nerve Subtypes Mediating Reflex Bronchospasm in Guinea Pigs. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283, R86-R98.
|
[40]
|
Morice, A.H. (2013) Chronic Cough Hypersensitivity Syndrome. Cough, 9, 14. http://dx.doi.org/10.1186/1745-9974-9-14
|
[41]
|
McGarvey, L.P. (2008) Does Idiopathic Cough Exist? Lung, 186, S78-S81. http://dx.doi.org/10.1007/s00408-007-9048-4
|
[42]
|
Lieu, T. and Undem, B.J. (2011) Neuroplasticity in Vagal Afferent Neurons Involved in Cough. Pulmonary Pharmacology & Therapeutics, 24, 276-279. http://dx.doi.org/10.1016/j.pupt.2011.02.003
|
[43]
|
Chen, C.Y., Joad, J.P., Bric, J. and Bonham, A.C. (2009) Central Mechanisms I: Plasticity of Central Pathways. Handbook of Experimental Pharmacology, 187, 187-201. http://dx.doi.org/10.1007/978-3-540-79842-2_9
|