[1]
|
Matsunaga, T., Tomoda, R., Nakajima, T. and Wake, H. (1985) Photoelectrochemical Sterilization of Microbial-Cells by Semiconductor Powders. FEMS Microbiology Letters, 29, 211-214. http://dx.doi.org/10.1111/j.1574-6968.1985.tb00864.x
|
[2]
|
Liou, J.W. and Chang, H.H. (2012) Bacteri-cidal Effects and Mechanisms of Visible Light-Responsive Titanium Dioxide Photocatalysts on Pathogenic Bacteria. Archivum Immunologiae Et Therapiae Experimentalis, 60, 267-275. http://dx.doi.org/10.1007/s00005-012-0178-x
|
[3]
|
Lilja, M., Welch, K., Åstrand, M., Engqvist, H. and Strømme, M. (2012) Effect of Deposition Parameters on the Photocatalytic Activity and Bioactivity of TiO2 Thin Films Deposited by Vacuum Arc on Ti-6Al-4V Substrates. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 100B, 1078-1085. http://dx.doi.org/10.1002/jbm.b.32674
|
[4]
|
Foster, H.A., Ditta, I.B., Varghese, S. and Steele, A. (2011) Photocatalytic Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity. Applied Microbiology and Biotechnology, 90, 1847-1868. http://dx.doi.org/10.1007/s00253-011-3213-7
|
[5]
|
Lilja, M., Forsgren, J., Welch, K., Åstrand, M., Engqvist, H. and Strømme, M. (2012) Photocatalytic and Antimicrobial Properties of Surgical Implant Coatings of Titanium Dioxide Deposited though Cathodic Arc Evaporation. Biotechnology Letters, 34, 2299-2305. http://dx.doi.org/10.1007/s10529-012-1040-2
|
[6]
|
Dalrymple, O.K., Stefanakos, E., Trotz, M.A. and Goswami, D.Y. (2010) A Review of the Mechanisms and Modeling of Photocatalytic Disinfection. Applied Catalysis B-Environmental, 98, 27-38. http://dx.doi.org/10.1016/j.apcatb.2010.05.001
|
[7]
|
Wu, X.Z., Lingyue, M. and Akiyama, K. (2005) Chemiluminescence Study of Active Oxygen Species Produced by TiO2 Photocatalytic Reaction. Luminescence, 20, 36-40. http://dx.doi.org/10.1002/bio.800
|
[8]
|
Cermenati, L., Pichat, P., Guillard, C. and Albini, A. (1997) Probing the TiO2 Photocatalytic Mechanisms in Water Purification by Use of Quinoline, Photo-fenton Generated OH Radicals and Superoxide Dismutase. Journal of Physical Chemistry B, 101, 2650-2658. http://dx.doi.org/10.1021/jp962700p
|
[9]
|
Okuda, M., Tsuruta, T. and Katayama, K. (2009) Lifetime and Diffusion Coefficient of Active Oxygen Species Generated in TiO2 Sol Solutions. Physical Chemistry Chemical Physics, 11, 2287-2292. http://dx.doi.org/10.1039/b817695g
|
[10]
|
Nosaka, Y., Nakamura, M. and Hirakawa, T. (2002) Behavior of Superoxide Radicals Formed on TiO2 Powder Photocatalysts Studied by a Chemiluminescent Probe Method.Physical Chemistry Chemical Physics, 4, 1088-1092. http://dx.doi.org/10.1039/b108441k
|
[11]
|
Popham, P.L. and Novacky, A. (1991) Use of Dimethyl-Sulfoxide to Detect Hydroxyl Radical during Bacteria-Induced Hypersensitive Reaction. Plant Physiology, 96, 1157-1160. http://dx.doi.org/10.1104/pp.96.4.1157
|
[12]
|
Pezzuto, J.M. and Park, E.J. (2007) Autoxidation and Antioxidants. In: Swarbrick, J., Ed., Encyclopedia of Phamaceutical Technology, 3rd Edition, Informa Healthcare, New York, 139-154.
|
[13]
|
Nakano, M., Sugioka, K., Ushijima, Y. and Goto, T. (1986) Chemiluminescence Probe with Cypridina Luciferin Analog, 2-Methyl-6-Phenyl-3,7-Dihydroimidazo[1,2-a]Pyrazin-3-One, for Estimating the Ability of Human-Granulocytes to Generate . Analytical Biochemistry, 159, 363-369. http://dx.doi.org/10.1016/0003-2697(86)90354-4
|
[14]
|
Sunada, K., Watanabe, T. and Hashimoto, K. (2003) Studies on Photokilling of Bacteria on TiO2 Thin Film. Journal of Photochemistry and Photobiology A-Chemistry, 156, 227-233. http://dx.doi.org/10.1016/S1010-6030(02)00434-3
|
[15]
|
Hirakawa, K., Mori, M., Yoshida, M., Oikawa, S. and Kawanishi, S. (2004) Photo-Irradiated Titanium Dioxide Catalyzes Site Specific DNA Damage via Generation of Hydrogen Peroxide. Free Radical Research, 38, 439-447. http://dx.doi.org/10.1080/1071576042000206487
|
[16]
|
Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. and Jacoby, W.A. (1999) Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward an Understanding of Its Killing Mechanism. Applied and Environmental Microbiology, 65, 4094-4098.
|
[17]
|
Kiwi, J. and Nadtochenko, V. (2004) New Evidence for TiO2 Photocatalysis during Bilayer Lipid Peroxidation. Journal of Physical Chemistry B, 108, 17675-17684. http://dx.doi.org/10.1021/jp048281a
|
[18]
|
Cho, M., Chung, H., Choi, W. and Yoon, J. (2004) Linear Correlation between Inactivation of E. coli and OH Radical Concentration in TiO2 Photocatalytic Disinfection. Water Research, 38, 1069-1077. http://dx.doi.org/10.1016/j.watres.2003.10.029
|
[19]
|
Wu, P.G., Imlay, J.A. and Shang, J.K. (2010) Mechanism of Escherichia coli Inactivation on Palladium-Modified Nitrogen-Doped Titanium Dioxide.Biomaterials, 31, 7526-7533. http://dx.doi.org/10.1016/j.biomaterials.2010.06.032
|
[20]
|
Cho, M. and Yoon, J. (2008) Measurement of OH Radical CT for Inactivating Cryptosporidium Parvum Using Photo/Ferrioxalate and Photo/TiO2 Systems. Journal of Applied Microbiology, 104, 759-766. http://dx.doi.org/10.1111/j.1365-2672.2007.03682.x
|
[21]
|
Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. and Fujishima, A. (1997) Photocatalytic Bactericidal Effect of TiO2 Thin Films: Dynamic View of the Active Oxygen Species Responsible for the Effect. Journal of Photochemistry and Photobiology A-Chemistry, 106, 51-56.
|
[22]
|
Welch, K., Cai, Y.L., Engqvist, H. and Strømme, M. (2010) Dental Adhesives with Bioactive and On-Demand Bactericidal Properties .Dental Materials, 26, 491-499. http://dx.doi.org/10.1016/j.dental.2010.01.008
|
[23]
|
Cai, Y., Strømme, M. and Welch, K. (2013) Photocatalytic Antibacterial Effects Are Maintained on Resin-Based TiO2 Nanocomposites after Cessation of UV Irradiation. PLoS One, 8, Article ID: e75929. http://dx.doi.org/10.1371/journal.pone.0075929
|
[24]
|
Welch, K., Cai, Y. and Strømme, M. (2012) A Method for Quantitative Determination of Biofilm Viability. Journal of Functional Biomaterials, 3, 418-431. http://dx.doi.org/10.3390/jfb3020418
|
[25]
|
Watson, H.E. (1908) A Note on the Variation of the Rate of Disinfection with Change in the Concentration of the Disinfectant. Journal of Hygiene, 8, 536-542. http://dx.doi.org/10.1017/S0022172400015928
|