A Parallel Derivation to the Maxwell-Garnett Formula for the Magnetic Permeability of Mixed Materials
Hsien-Ming Chang, Chungpin Liao
DOI: 10.4236/wjcmp.2011.12009   PDF   HTML     5,458 Downloads   11,680 Views   Citations


Although mixing formulas for the effective-medium type of approximations for the dielectric permittivities in the in-fi-nite-wavelength (i.e., quasistatic) limit, such as the Maxwell Garnett formula, have been popularly applied in the whole spectral range of electromagnetic fields, their magnetic counterpart has seldom been addressed up to this day. An effort is thus devoted to the derivation of such an equation to predict the final permeability as the result of mixing together several materials. In a similar fashion to the approach leading to the Maxwell Garnett formula, a model is adopted wherein an originally isotropic host material is embedded with a cluster of spherical homogeneous magnetic particles. It is expected that such obtained formula should find wide applications, and particularly in the light frequency domain in this blossomful era of nanometer technology.

Share and Cite:

H. Chang and C. Liao, "A Parallel Derivation to the Maxwell-Garnett Formula for the Magnetic Permeability of Mixed Materials," World Journal of Condensed Matter Physics, Vol. 1 No. 2, 2011, pp. 55-58. doi: 10.4236/wjcmp.2011.12009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. Lamb, D. M. Wood and N. W. Ashcroft, “Long- Wave-length Electromagnetic Propagation in Heterogeneous Media,” Physical Review B, Vol. 21, No. 6, March 1980, pp. 2248-2266. doi:10.1103/PhysRevB.21.2248
[2] J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Philosophi-cal Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, Vol. 203, 1904, pp. 385-420. doi:10.1098/rsta.1904.0024
[3] Ping Sheng and Mireille Gadenne, “Effective Magnetic Permeability of Granular Fer-romagnetic Metals,” Journal of Physics: Condensed Matter, Vol. 4, No. 48, 1992, pp. 9735-9740. doi:10.1088/0953-8984/4/48/025
[4] D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizit?tskonstanten und Leit-f?higkeiten der Mischk?r- per aus isotropen Substanzen,” An-nalen der Physik, Vol. 416, No. 7, 1935, pp. 636-664. doi:10.1002/andp.19354160802
[5] J. Jamnik, J. R. Kalnin, E. A. Kotomin and J. Maier, “Generalised Maxwell-Garnett Equa-tion: Application to Electrical and Chemical Transport,” Physical Chemistry Chemical Physics, Vol. 8, No. 11, 2006, pp. 1310-1314. doi:10.1039/b514448p
[6] J. I. Gittleman, B. Abeles, “Com-parison of the Effective Medium and the Maxwell-Garnett Pre-dictions for the Dielectric Constants of Granular Metals,” Physical Review B, Vol. 15, No. 6, March 1977, pp. 3273-3275. doi:10.1103/PhysRevB.15.3273
[7] Cambridge Sequential Total Energy Package (CASTEP) and DMol3, Administered by Accelrys Inc.
[8] D. K. Cheng, “Field and Wave Electro-magnetics,” Se- cond Edition, Addison-Wesley Pub. Co., Reading, 1989.
[9] E. M. Purcell, “Electricity and Magnet-ism,” Second Edition, Education Development Center, Inc., Massachusetts, 1985.
[10] H. A. Lorentz, “Ueber die Bezie-hung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der K?rperdichte,” Annalen der Physik, Vol. 245, No. 4, 1880, pp. 641-665.
[11] L. Lorenz, “Ueber die Refractionscon-stante,” Annalen der Physik, Vol. 247, No. 9, 1880, pp. 70-103.
[12] P. Lorrain and D. R. Corson, “Electromagnetic Fields and Waves,” Second Edition, W. H. Freeman & Co Ltd, San Francisco, 1970.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.