DFT Study of Monochlorinated Pyrene Compounds


The structure, electronic properties, and chemical reactivity of pyrene and its three monochlorinated derivatives have been theoretically studied by using density functional theory (DFT). Several methods and basis sets are tested for the optimization of the geometrical structure and the B3LYP/6-311G** method/basis set is found to be the most suitable in predicting the heat of formation of pyrene and the minimum energy optimized structure of pyrene and its monochlorinated derivatives. The geometrical parameters and the heat of formation of pyrene are in good agreement with available experimental data. The chemical reactivity and stability of the four compounds are investigated. The computed results agree well with experimental results of monochlorination of the pyrene molecule. The relative stability of the monochlorinated pyrene compounds is in the order: 1-chloropyrene > 4-chloropyrene > 2-chloropyrene.

Share and Cite:

AlShamaileh, E. (2014) DFT Study of Monochlorinated Pyrene Compounds. Computational Chemistry, 2, 43-49. doi: 10.4236/cc.2014.23006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Pagnoni, A., Kligman, A.M. and Stoudenayer, T. (1998) Pyranine, a Fluorescent Dye, Detects Subclinical Injury to Sodium Lauryl Sulfate. Journal of Cosmetic Science, 49, 33-38.
[2] Clar, E., Roberston, J.M., Schloegl, R. and Schmidt, W. (1981) Photoelectron Spectra of Polynuclear Aromatics. 6. Applications to Structural Elucidation: “Circumanthracene”. Journal of the American Chemical Society, 103, 1320-1328. http://dx.doi.org/10.1021/ja00396a003
[3] Goodpaster, J.V., Harrison, J.F. and McGuffin, V.L. (1998) Ab Initio Study of Polycyclic Aromatic Hydrocarbons in Their Ground and Excited States. The Journal of Physical Chemistry A, 102, 3372-3381. http://dx.doi.org/10.1021/jp980467k
[4] Kerr, C.E., Mitchell, C.D., Headrick, J., Eaton, B.E. and Netzel, T.L. (2000) Synthesis and Photophysics of a 1-Pyrenyl Substituted 2’-Deoxyuridine-5-carboxamide Nucleoside: Electron Transfer Products as CISINDO/S Excited States. The Journal of Physical Chemistry B, 104, 1637-1650.
[5] Charles Li, X.-C., Okamura, Y., Ueno, K., Tashiro, M. and Prakash, G.K. (2005) Organic Electroluminescent Device Based on Pyrene Derivatives. US Patent No. 6852429.
[6] Luthe, G.M., Ariese, F., Udo, A. and Brinkman, T. (2002) Monochlorinated Polycyclic Aromatic Hydrocarbons: Standards in Environmental Chemistry and Biochemical Applications. The Handbook of Environmental Chemistry, 3N, 249-275.
[7] Dewhurst, F. and Kitchen, D.A. (1972) Synthesis and Properties of 6-Substituted Benzo[a]pyrene Derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2,710-712.
[8] Ohura, T., Kitazawa, A. and Amagai, T. (2004) Seasonal Variability of 1-Chloropyrene on Atmospheric Particles and Photostability in Toluene. Chemosphere, 57, 831-837.
[9] Muff, J. and Sogaard, E.G. (2011) Identification and Fate of Halogenated PAHs Formed during Electrochemical Treatment of Saline Aqueous Solutions. Journal of Hazardous Materials, 186, 1993-2000. http://dx.doi.org/10.1016/j.jhazmat.2010.12.110
[10] Takeuchi, H. (2013) Structures, Stability, and Growth Sequence Patterns of Small Homoclusters of Naphthalene, Anthracene, Phenanthrene, Phenalene, Naphthacene, and Pyrene. Computational and Theoretical Chemistry, 1021, 84-90. http://dx.doi.org/10.1016/j.comptc.2013.06.029
[11] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A. (2004) Gaussian 03, Revision B.03. Gaussian, Inc., Wallingford CT.
[12] Robertson, J.M. and White, J.G. (1947) The Crystal Structure of Pyrene. A Quantitative X-Ray Investigation. Journal of the Chemical Society, 1, 358-368. http://dx.doi.org/10.1039/jr9470000358
[13] Jensen, A. and Berg, A. (1965) Reactions of Halopyrenes with Phenyllithium in Ether. Acta Chemica Scandinavica, 19, 1838-1842. http://dx.doi.org/10.3891/acta.chem.scand.19-1838
[14] Hu, J., Jin, X., Kunikane, S., Terao, Y. and Aizawa, T. (2006) Transformation of Pyrene in Aqueous Chlorination in the Presence and Absence of Bromide Ion:? Kinetics, Products, and Their Aryl Hydrocarbon Receptor-Mediated Activities. Environmental Science Technology, 40, 487-493. http://dx.doi.org/10.1021/es0516108
[15] Fabina, J. and Hartmann, H. (1980) Theoretical Treatment and Empirical Rules. Springer, Berlin, 117.
[16] Vektariene, A, Vektaris, G. and Svoboda, J. (2009) A Theoretical Approach to the Nucleophilic Behavior of Benzofused Thieno[3,2-b]furans Using DFT and HF Based Reactivity Descriptors. ARKIVOC, 7, 311-329. http://dx.doi.org/10.3998/ark.5550190.0010.730
[17] Parr, R.G. and Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society, 105, 7512.
[18] Li, Y.-F., Fan, X.-W., Wang, Z.-Y. and Ju, X.-H. (2009) A Density Functional Study of Substituted Pyrazole Derivatives. Journal of Molecular Structure: THEOCHEM, 896, 96-102.
[19] Smith, L., Bjellerup, L., Krook, S. and Westermark, H. (1953) Heats of Combustion of Organic Chloro Compounds Determined by the “Quartz Wool” Method. Acta Chemica Scandinavica, 7, 65-86.
[20] Nilsson, U.L. and Ostman, C.E. (1983) Chlorinated Polycyclic Aromatic Hydrocarbons: Method of Analysis and Their Occurrence in Urban Air. Environmental Science Technology, 27, 1826-1831.
[21] Roux, M.V., Temprado, M., Chickos, J.S. and Nagano, Y. (2008) Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons. Journal of Physical and Chemical Reference Data, 37, 1855-1996. http://dx.doi.org/10.1063/1.2955570

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.