Improvement of Power System Stability by Static Var Compensator and Tuning Employing Genetic Algorithm

DOI: 10.4236/ijmnta.2014.33013   PDF   HTML   XML   4,702 Downloads   5,654 Views   Citations


The use of power systems as close to their operating limits can cause instability if a disturbance is occurred. The damping of the system’s oscillations can be obtained by conventional means such as voltage and speed regulation but also by Flexible AC Transmission System devices (FACTS). These devices are increasingly used in power systems. This paper presents a systematic procedure for modelling and simulation of a single-machine infinite-bus power system installed with a Static VAR Compensator (SVC). So the impact of the SVC on power system stability can be reasonably evaluated. Genetic algorithm (GA) optimization technique is applied to design robust power system stabilizer and SVC-controllers for single-machine infinite-bus (SMIB) and is employed to search for optimal controller parameters.

Share and Cite:

Keskes, S. , Bahloul, W. and Kammoun, M. (2014) Improvement of Power System Stability by Static Var Compensator and Tuning Employing Genetic Algorithm. International Journal of Modern Nonlinear Theory and Application, 3, 113-123. doi: 10.4236/ijmnta.2014.33013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Cutsem, T.V. and Vittal, V. (2004) Definition and Classification of Power System Stability. IEEE Transactions on Power Systems, 19, 87-140.
[2] Zakaria, M.H. (2012) Optimisation des paramètres d’un FACTS shunt pour l’amélioration de la stabilité transitoire d’un système électrique. SETIF University of Technology, Juin.
[3] Haimour, R. (2010) Controle des Puissances Réactives et des Tensions par les Dispositifs FACTS dans un Réseau Electrique. Ecole Normale Supérieure de l’Enseignement Technologique d’Oran, 2009. W. Bahloul, automatisation des essaies des machines électriques: contribution à la modélisation, à l’identification et la commande d’une machine synchrone couplée au réseau. Theses ENIS Decembre 2010.
[4] Hingorani, N.G. and Gyugyi, L. (2000) Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. IEEE Press, New York.
[5] Rios, M.A. (1992) Modélisation pour Analyses Dynamiques des Réseaux Electriques avec Compensateurs de Puissance Réactive—SVC. Grenoble, March.
[6] Panda, S. and Ardil, C. (2011) Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design, World Academy of Science. Engineering and Technology International Journal of Electrical, Electronic Science and Engineering, 5, 66-74.
[7] Wang, Y.P., Hur, D.R., Chung, H.H., Watson, N.R., Arrillaga, J. and Matair, S.S. (2000) A Genetic Algorithms Approach to Design and Optimal PI Controller for Static VAr Compensator. International Conference on Power System Technology (PowerCon 2000), Christchurch, 4-7 December 2000, 1557-1562.
[8] Acha, E., Fuerte-Esquivel, C., Ambriz-Perez, H. and Angeles-Camacho, C. (2004) FACTS Modelling and Simulation in Power Networks. John Wiley & Sons LTD, England.
[9] Lei, X., Lerch, E. and Povh, D. (2001) Optimization and Coordination of Damping Controls for Improving System Dynamic Performance. IEEE Transactions on Power Systems, 16, 473-480.
[10] Hingorani, N.G. and Gyugyi, L. (2001) Understanding FACTS. IEEE Press, Piscataway.
[11] Panda, S. and Padhy, N.P. (2007) Power System with PSS and FACTS Controller: Modelling, Simulation and Simultaneous Employing Genetic Algorithm. International Journal of Electrical and Electronics Engineering, 1, 9-18.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.