An Easy and Efficient Method to Functionalize Titanium Dioxide Nanoparticles with Maleic Anhydride


In this work, titanium dioxide (TiO2) nanoparticles were functionalized with maleic anhydride (MA), using a non-polar (toluene) and polar protic (ethanol) solvents. The concentrations of MA in the reaction were varied to obtain the desired degree of functionalization. The samples were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Diffuse Reflectance UV-Vis Spectroscopy (DRS), Thermal Analysis (TGA-DTA) and Nitrogen Adsorption (BET). The physical adsorption of organic molecules was eliminated by washing a number of times in water. Chemical stability between solid-organic phases was confirmed by TOC and thermal analysis. FT-IR and DRS results clearly show the chemical adsorption of MA on the TiO2. The UV-Vis spectroscopy is claimed to be a suitable technique to determine the achievement of TiO2 functionalization. Two different adsorptions geometries of MA were proposed. The presence of MA on the surface TiO2 increases the band gap. These results imply that TiO2 can be excited with less energy and increase the absorption of light in the visible region. The effectiveness of the functionalized nanoparticles to interact with organic materials is currently being studied with the intention of applying them in the energy and environmental sanitation fields.

Share and Cite:

Del Castillo, P. , Manuel, S. and Ruiz, F. (2014) An Easy and Efficient Method to Functionalize Titanium Dioxide Nanoparticles with Maleic Anhydride. Soft Nanoscience Letters, 4, 53-62. doi: 10.4236/snl.2014.43008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Rengifo, H.J.A., Mielczarski, E., Mielczarski, J., Castillo, N.C., Kiwi, J. and Pulgarin, C. (2008) Escherichia Coli Inactivation by N, S Co-Doped Commercial TiO2 Powders Under UV and Visible Light. Applied Catalysis B, 84, 448-456.
[2] Chen, D., Huang, F., Cheng, Y.B. and Caruso, R.A. (2009) Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells. Advanced Materials, 21, 2206-2210.
[3] Takai, A. and Kamat, P.V. (2005) Capture, Store, and Discharge. Shuttling Photogenerated Electrons Across TiO2-Silver Interface. ACSnano, 5, 7369-7376.
[4] Lucarelli, L., Nadtochenko, V. and Kiwi, J. (2000) Environmental Photochemistry: Quantitative Adsorption and FTIR Studies During the TiO2-Photocatalyzed Degradation of Orange II. Langmuir, 16, 1102-1108.
[5] Mu, S., Long, Y., Kang, S.Z. and Mu, J. (2010) Surface Modification of TiO2 Nanoparticles with a C60 Derivative and Enhanced Photocatalytic Activity for the Reduction of Aqueous Cr(VI) Ions. Catalysis Communications, 11, 741-744.
[6] Guo, H., Lin, K., Zheng, Z., Xiao, F. and Li, S. (2012) Sulfanilic Acid-Modified P25 TiO2 Nanoparticles with Improved Photocatalytic Degradation on Congo Red Under Visible Light. Dyes and Pigments, 92, 1278-1284.
[7] Anpo, M., Dohshi, S., Kitano, M., Hu, Y., Takeuchi, M. and Matsuoka, M. (2005) The Preparation and Characterization of Highly Efficient Titanium Oxide-Based Photo Functional Materials. Annual Review of Materials Research, 35, 1-27.
[8] Rodríguez-González, V., Zanella, R., del Angel, G. and Gomez, R. (2008) MTBE Visible-Light Photocatalytic Decomposition Over Au/TiO2 and Au/TiO2-Al2O3 Sol-Gel Prepared Catalysts. Journal of Molecular Catalysis A, 281, 93-98.
[9] Ren, F.J., Ling, Y.H. and Feng, J.Y. (2010) The Role of W Doping in Response of Hydrogen Sensors Based on MAO Titania Films. Applied Surface Science, 256, 3735-3739.
[10] Kim, T.H., Rodríguez-González, V., Gyawali, G., Cho, S.H., Sekino, T. and Lee, S.W. (2012) Synthesis of Solar Light Responsive Fe, N Co-Doped TiO2 Photocatalyst by Sonochemical Method. Catalysis Today, 212, 75-80.
[11] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, A. and Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271.
[12] Zhang, Z., Wang, X., Long, J., Gu, Q., Ding, Z. and Fu, X. (2010) Nitrogen-Doped Titatium Dioxide Visible Light Photocatalyst: Spectroscopic Identification of Photoactive Centes. Journal of Catalysis, 276, 201-214.
[13] Veréb, G., Ambrus, Z., Pap, Z., Kmetiko, á., Dombi, A., Danciu, V., Cheesman, A. and Mogyorósi, K. (2011) Comparative Study on UV and Visible Light Sensitive Bare and Doped Titanium Dioxide Photocatalysts for the Decomposition of Environmental Pollutants in Water. Applied Catalysis B, 110, 25-32.
[14] Di Valentin, C., Pacchioni, G. and Selloni, A. (2005) Theory of Carbon Doping of Titanium Dioxide. Chemistry of Materials, 17, 6656-6665.
[15] Farhangi, N., Chowdhury, R.R., Medina-Gonzalez, Y., Ray, M.B. and Charpentier, P.A. (2011) Visible Light Active Fe Doped TiO2 Nanowires Grown on Graphene Using Supercritical CO2. Applied Catalysis B, 110, 25-32.
[16] Wang, F., Min, S.X., Han, Y.Q. and Feng, L. (2010) Visible-Light-Induced Photocatalytic Degradation of Methylene Blue with Polyaniline-Sensitized TiO2 Composite Photocatalysts. Superlattices and Microstructures, 48, 170-180.
[17] Galoppini, E. (2004) Linkers for Anchoring Sensitizers to Semiconductor Nanoparticles. Coordination Chemistry Reviews, 248, 1283-1297.
[18] Choi, S.K., Yang, H.S., Kim, J.H. and Park, H. (2012) Organic Dye-Sensitized TiO2 as a Versatile Photocatalyst for Solar Hydrogen and Environmental Remediation. Applied Catalysis B, 121-122, 206-213.
[19] Johansson, E.M., Plogmaker, S., Walle, L.E., Scholin, R., Borg, A., Sandell, A. and Rensmo, H. (2010) Comparing Surface Binding of the Maleic Anhydride Anchor Group on Single Crystalline Anatase TiO2 (101), (100), and (001) Surfaces. Journal of Physical Chemistry C, 114, 15015-15020.
[20] Lopez, A., Bitzer, T., Heller, T. and Richardson, N.V. (2001) Adsorption of Maleic Anhydride on Si(100)-2 x 1. Surface Science, 477, 219-226.
[21] Bishop, L.M., Yeager, J.C., Chen, X., Wheeler, J.N., Torelli, M.D., Benson, M.C., Burke, S.D., Pedersen, J.A. and Hammers, R.J. (2012) A Citric Acid-Derived Ligand for Modular Functionalization of Metal Oxide Surface Via “Click” Chemistry. Langmuir, 28, 1322-1329.
[22] Wilson, J.N., Titheridge, D.J., Kieu, L. and Idriss, H. (2000) Reactions of Maleic Anhydride Over TiO2 (001) Single Crystal Surfaces. Journal of Vacuum Science & Technology A, 18, 1887-1892.
[23] Bates, S.P., Kresse, G. and Gillan, M.J. (1998) The Adsorption and Dissociation of ROH Molecules on TiO2 (110). Surface Science, 409, 336-349.
[24] Gong, X.Q., Selloni, A., Batziull, M. and Diebold, U. (2006) Steps on Anatase TiO2 (101). Nature Materials, 5, 665-670.
[25] Zeng, W., Liu, T., Wang, Z., Tsukimoto, S., Saito, M. and Ikuhara, Y. (2010) Oxygen Adsorption on Anatase TiO2 (101) and (001) Surfaces from First Principles. Materials Transactions, 51, 171-175.
[26] Kavathekar, R.S., Dev, P., English, N.J. and MacElroy, J.M.D. (2011) Molecular Dynamics Study of Water in Contact with TiO2 Rutile-110, 100, 101, 001 and Anatase-101, 001 Surface. Molecular Physics, 109, 1649-1656.
[27] Cai, Y., Bai, Z., Chintalapati, S., Zeng, Q. and Feng, Y.P. (2013) Transition Metal Atoms Pathways on Rutile TiO2 (110) Surface: Distribution of Ti3+ States and Evidence of Enhanced Peripheral Charge Accumulation. Journal of Chemical Physics, 138, 154711-1, 54711-14.
[28] Girol, S.G., Strunskus, T., Muhler, M. and Woll, C. (2004) Reactivity of ZnO Surfaces toward Maleic Anhydride. Journal of Physical Chemistry B, 108, 13736-13745.
[29] Wilson, J.N. and Idriss, H. (2005) Reactions of Glutaric Acid on the TiO2 (001) Single Crystal. Effect of Surface Reduction on the Reaction Pathway. Langmuir, 21, 8263-8269.
[30] Gao, Y.K. (2010) Probing the Interaction of Small Organic Molecules on Metal Oxide Surfaces. Ph.D. Thesis, Ruhr Universitat Bochum Faculty of Chemistry Physical Chemistry 1, Bochum.
[31] Sprenger, D. and Anderson, O. (1991) Deconvolution of XPS Spectra. Fresenius’ Journal of Analytical Chemistry, 341, 116-120.
[32] Ni, J., Meunier, F.C., Robles-Manuel, S., Barrault, J. and Valange, S. (2011) Characterization of Surface Acidity of Carbonated Materials by IR-Sensitive Molecular Probes: Advantages of Using Tert-Butyl Cyanide. Journal of Physical Chemistry C, 115, 24931-24936.
[33] Mirone, P. and Chiorboli, P. (1962) Infrared and Raman Spectra and Vibrational Assignment of Maleic Anhydride. Spectrochimica Acta, 18, 1425-1432.
[34] Parker, S.F., Wilson, C.C., Tomkinson, J., Keen, D.A., Shankland, K., Ramirez-Cuesta, A.J., Mitchell, P.C.H., Florence, A.J. and Shankland, N. (2001) Structure and Dynamics of Maleic Anhydride. Journal of Physical Chemistry A, 105, 3064-3070.
[35] Vogt, N., Demaison, J. and Rudolph, H.D. (2011) Equilibrium Structure and Spectroscopic Constants of Maleic Anhydride. Structural Chemistry, 22, 337-343.
[36] Nijhuis, T., Visser, T. and Weckhuysen, B.M. (2005) The Role of Gold in Gold—Titania Epoxidation Catalysts. Angewandte Chemie International Edition, 44, 1115-1118.
[37] Ruiz, A., Der Linden, B., Makkee, M. and Mul, G. (2009) Acrylate and Propoxy-Groups: Contributors to Deactivation of Au/TiO2 in the Epoxidation of Propene. Journal of Catalysis, 266, 286-290.
[38] Fang, W.Q., Gong, X. and Yang, H.G. (2011) On the Unusual Properties of Anatase TiO2 Exposed by Highly Reactive Facets. Journal of Physical Chemistry Letters, 2, 725-734.
[39] Vittadini, A., Selloni, A., Rotzinger, F.P. and Grotzel, M. (1998) Structure and Energetics of Water Adsorbed at TiO2 Anatase (001) and (001) Surfaces. Physical Review Letters, 81, 2954-2957.
[40] Kim, K.S. and Barteau, M.A. (1990) Structural Dependence of the Selectivity of Formic Acid Decomposition on Faceted Titania (001) Surfaces. Langmuir, 6, 1485-1488.
[41] Nikumbh, A., Pardeshi, K. and Raste, M.N. (2001) A Study of the Thermal Decomposition of Cooper (II) and Zinc (II) Malonate Maleate and Succinate Complexes Using Direct Current Electrical Conductivity Measurements. Thermochimica Acta, 374, 115-128.
[42] Feist, M., Kunze, R., Neubert, D., Witke, K., Mehner, H. and Kemnitz, E. (2000) Two Oxidation States and Four Different Coordinations of Iron in an Unusual Chloro Complex TG-MS, Raman and Mossbauer Spectroscopic Investigations of the Thermal Behavior. Thermochimica Acta, 361, 53-60.
[43] Wang, D.S., Zhang, J., Luo, Q.Z., Li, X.Y., Duan, Y.D. and An, J. (2009) Characterization and Photocatalytic Activity of Poly(3-Hexylthiophene)-Modified TiO2 for Degradation of Methyl Orange under Visible Light. Journal of Hazardous Materials, 169, 546-450.
[44] Li, X.Y., Wang, D.S., Cheng, G.X., Luo, Q.Z., An, J. and Wang, Y.H. (2008) Preparation of Polyaniline-Modified TiO2 Nanoparticles and Their Photocatalytic Activity under Visible Light Illumination. Applied Catalysis B, 81, 267- 273.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.