Effects of Carbonation on the Microporosity and Macro Properties of Portland Cement Mortar CEM I


The aim of this work was to examine the microstructural changes of CEM I standardised cement mortar caused by accelerated carbonation (20% CO2 concentration) using porosity accessible to water and nitrogen adsorption. The conflicted results obtained by these two techniques showed the differences in porous domains explored, while the pore size distributions calculated from nitrogen adsorption provided evolution of the micro and meso pores during carbonation. The porosity accessible to water showed changes in all three porous domains: macro, meso and micro pores. This is because of difference in the molecular sizes between water and nitrogen molecules. Although these two techniques are different, they help to complementarily evaluate the effects of carbonation. The results also indicated the influence of type of cement on microstructural evolutions and the correlation between variations of mesopores volume and specific surface area. Changes in microstructure induce changes in macroscopic properties that we also examined such as the solid phase volume using helium pycnometry, the gas permeability, the thermal conductivity, the thermal diffusivity, and the longitudinal and transverse ultrasonic velocities.

Share and Cite:

Pham, S. (2014) Effects of Carbonation on the Microporosity and Macro Properties of Portland Cement Mortar CEM I. Journal of Materials Science and Chemical Engineering, 2, 40-52. doi: 10.4236/msce.2014.27005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] (2004) Véronique Baroghel Bouny, Conception des bétons pour une durée de vie donnée des ouvrages. Association française de génie civil.
[2] Mickaël, T. (2005) Modelling of Atmospheric Carbonation of Cement Based Materials Considering the Kinetic Effects and Modifications of the Microstructure. Ph.D. Thesis, L’école nationale des ponts et chausses, Paris.
[3] Ngala, V.T. and Page, C.L. (1997) Effects of Carbonation on Pore Structure and Diffusional Propeties of Hydrated Cement Pastes. Cement and Concrete Research, 27, 995-1007.
[4] Jaafar, W. (2003) Influence de la carbonatation sur la porosité et la perméabilité des bétons, Diplôme d’études approfondies. Master of Advanced Studies, Laboratoire Central des Ponts et Chaussées, Paris.
[5] Hiromitu, N. and Masako, H. (1991) Analysis of Adsorption Isotherms of Water Vapour for Nonporous and Porous Adsorbents. Journal of Colloid and Interface Science, 145, 405-412.
[6] De Belie, N., Kratky, J. and Van Vlierberghe, S. (2010) Influence of Pozzolans and Slag on the Microstructure of Partially Carbonated Cement Paste by Means of Water Vapour and Nitrogen Sorption Experiments and BET Calculations. Cement and Concrete Research, 40, 1723-1733.
[7] Zhang, Q., Ye, G. and Koenders, E. (2013) Investigation of the Structure of Heated Portland Cement Paste by Using Various Techniques. Construction and Building Materials, 38, 1040-1050.
[8] Brunauer, S., Emmett, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers, Journal of American Chemical Society, 60, 309-319.
[9] Bier, Th.A., Kropp, J. and Hilsdorf, H.K. (1987) Carbonation and Realkalinization of Concrete and Hydrated Cement Paste. In: Maso, J.C., Ed., Durability of Construction Materials, Vol. 3, RILEM, Chapman & Hall Publishers, London, New York, 927-934.
[10] Association française pour la construction et pour la recherche et les essais sur les matériaux et les constructions (A.F.P.C.-A.F.R.E.M) (1997) Essai de carbonatation accéléré, mesure de l’épaisseur de béton carbonate. In: Ollivier, J.P., Ed., Durabilité des bétons—Méthodes recommandées pour la mesure des grandeurs associées à la durabilité, Laboratoire des Matériaux et Durabilité des Constructions, Toulouse, 153-158.
[11] Barrett, E.P., Joyner, L.G. and Halenda, P.P. (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73, 373-380.
[12] Kollek, J.J. (1989) The Determination of the Permeability of Concrete to Oxygen by the CEMBUREAU Method—A Recommendation. Materials and Structures, 22, 225-230.
[13] Carde, C. (2006) La Carbonatation. Le magazine Béton, 2, 53-54.
[14] Eitel, W. (1966) Silicate Science: Ceramics and Hydraulic Binders. Vol. 5, Academic Press, New York.
[15] Swenson, E.G. and Sereda, P.J. (1968) Mechanism of the Carbonation Shrinkage of Lime and Hydrated Cement. Journal of Applied Chemistry, 18, 111-117.
[16] Houst, F.Y. and Wittmann, F.H. (1989) Retrait de Carbonatation. IABSE Symposium, Lisbon, 14-17 September 2005, 255-260.
[17] Association française pour la construction et pour la recherche et les essais sur les matériaux et les constructions (A.F.P.C.-A.F.R.E.M) (1997) Détermination de la masse volumique apparente et de la porosité accessible à l’eau. In: Ollivier, J.P., Ed., Durabilité des béton—Méthodes recommandées pour la mesure des grandeurs associées à la durabilité, Laboratoires des Matériaux et Durabilité des Constructions, Toulouse, 121-124.
[18] RILEM TC 116-PCD (1999) Permeability of Concrete as a Criterion of Its Durability. Materials and Structure, 32, 163 -173.
[19] Neville, A.M. (1990) Properties of Concrete. Longman Scientific and Technical, London.
[20] Luo, Q.X. and Bungey, J.H. (1996) Using Compression Wave Ultrasonic Transducers to Measure the Velocity of Surface Waves and Hence Determine Dynamic Modulus of Elasticity for Concrete. Construction and Building Materials, 4, 237-242.
[21] Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1989) A Reaction Engineering Approach to the Problem of Concrete Carbonation. AIChE Journal, 35, 1639-1650.
[22] Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991) Fundamental Modelling and Experimental Investigation of Concrete Carbonatation. ACI Material Journal, 88, 363-373.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.