Effects of chitosan on dental bone repair

DOI: 10.4236/health.2011.34036   PDF   HTML     6,875 Downloads   14,088 Views   Citations


Objectives: Bone defects following tumor resection and osteolysis due to dental and bone lesions and periodentium tissue disorders are serious challenges. One of these materials used is chitosan, a derivative of crustaceans’ exoskeleton. The aim of this study was to assess effects of chitosan on socket repair after dental extraction. Methods: Twenty four dental sockets of 15-24 years old patients were visited by a maxillofacial surgeon for extracting premolar teeth for orthodontic purposes. The sockets in one side were filled-in by chitosan. In the other side, the sockets were left unfilled. After 10 weeks, periapical radiographs were obtained from the repair sites, were digitalized and then evaluated for densitometry using Adobe Photoshop Software. Each socket was divided into coronal, middle and apical. Dental density of each socket in case and control groups was recorded. The density of regenerated bone was compared against the maximum bone density of each individual. Wilcoxon signed range test and paired t-test were used for data analysis. Results: Bone density in middle and apical sections in case group was significantly more than control group. In apical section in case group regenerated bone reached up to 98.2% of normal bone density. In each patient, the bone density in epical and middle sections was increase 29.3% and 10.8% of normal bone density. Conclusions: Chitosan significantly increased bone density in epical and middle sections. Chitosan can be used for bone repair in cases of bone loss. Various densitometry studies for evaluating chitosan effects in different bone defects are suggested.

Share and Cite:

Ezoddini-Ardakani, F. , Navab Azam, A. , Yassaei, S. , Fatehi, F. and Rouhi, G. (2011) Effects of chitosan on dental bone repair. Health, 3, 200-205. doi: 10.4236/health.2011.34036.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Wang, X., Ma, J., Wang, Y. and He, B. (2002) Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biom- aterials, 23, 4167-4176. doi:10.1016/S0142-9612(02)00153-9
[2] Damien, C.J. and Parsons, J.R. (1991) Bone graft and bone graft sub-stitutes: A review of current technology and applications. Journal of Applied Biomaterials, 2, 187-208. doi:10.1002/jab.770020307
[3] Liu, H., Li, H., Cheng, W., Yang, Y., Zhu, M. and Zhou, C. (2006) Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater, 2, 557-565. doi:10.1016/j.actbio.2006.03.007
[4] Song, H.Y., Esfakur Rahman, A.H. and Lee, B.T. (2009) Fabrication of calcium phosphate-calcium sulfate inje- ctable bone substitute using chitosan and citric acid. Journal of Materials Science: Materials in Medicine, 20, 935-941. doi:10.1007/s10856-008-3642-8
[5] Khan, T.A., Peh, K.K. and Ch’ng, H.S. (2002) Reporting degree of dea-cetylation values of chitosan: The influ- ence of analytical methods. Journal of Pharmacy & Phar-maceutical Sciences, 5, 205-212.
[6] Madihally, S.V. and Matthew, H.W. (1999) Porous chito- san scaffolds for tissue engineering. Biomaterials, 20, 1133-1142. doi:10.1016/S0142-9612(99)00011-3
[7] Nascimento, E.G., Sampaio, T.B., Medeiros, A.C. and Azevedo, E.P. (2009) Evaluation of chitosan gel with 1% silver sulfa-diazine as an alternative for burn wound treatment in rats. Acta Cirurgica Brasileira, 24, 460-465. doi:10.1590/S0102-86502009000600007
[8] Khor, E. and Lim, L.Y. (2003) Implantable applications of chitin and chitosan. Biomaterials, 24, 2339-249. doi:10.1016/S0142-9612(03)00026-7
[9] Spin-Neto, R., de Freitas, R.M., Pavone, C., Cardoso, M.B., Campana-Filho, S.P., Marcantonio, R.A., et al. (2010) Histological evaluation of chitosan-based biom- aterials used for the correction of critical size defects in rat’s calvaria. Journal of Biomedical Materials Research, 93, 107-114.
[10] Costantino, P.D., Friedman, C.D. and Lane, A. (1993) Synthetic bioma-terials in facial plastic and recon- structive surgery. Facial Plastic Surgery, 9, 1-15. doi:10.1055/s-2008-1064591
[11] LeHoux, J.G. and Grondin, F. (1993) Some effects of chitosan on liver function in the rat. Endocrinology, 132, 1078-1084. doi:10.1210/en.132.3.1078
[12] Machida, Y., Nagai, T., Abe, M. and Sannan, T. (1986) Use of chitosan and hydroxypropylchitosan in drug formulations to effect sustained release. Drug Design & Delivery, 1, 119-130.
[13] Muzzarelli, R.A., Biagini, G., Bellardini, M., Simonelli, L., Castaldini, C. and Fratto, G. (1993) Osteoconduction exerted by methylpyrrolidinone chitosan used in dental surgery. Biomaterials, 14, 39-43. doi:10.1016/0142-9612(93)90073-B
[14] Bumgardner, J.D., Wiser, R., Gerard, P.D., Bergin, P., Chest-nutt, B., Marin, M., et al. (2003) Chitosan: Poten- tial use as a bioactive coating for orthopaedic and craniofacial/dental implants. Journal of Biomaterials Science, Polymer Edition, 14, 423-438. doi:10.1163/156856203766652048
[15] Ducy, P., Schinke, T. and Karsenty, G. (2000) The osteoblast: A sophisticated fibroblast under central surv- eillance. Science, 289, 1501-1504. doi:10.1126/science.289.5484.1501
[16] Yao, Z., Xing, L., Qin, C., Schwarz, E.M. and Boyce, B.F. (2008) Osteoclast precursor interaction with bone matrix induces osteoclast formation directly by an interleukin-1-mediated autocrine mechanism. Journal of Biological Chemistry, 283, 9917-9924. doi:10.1074/jbc.M706415200
[17] Karesh, J.W. (1998) Biomaterials in ophthalmic plastic and reconstructive surgery. Current Opinion in Ophth- almology, 9, 66-74. doi:10.1097/00055735-199810000-00013
[18] Miyamoto, Y., Ishikawa, K., Takechi, M., Toh, T., Yuasa, T., Nagayama, M., et al. (1998) Basic properties of calci- um phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials, 19, 707-715. doi:10.1016/S0142-9612(97)00186-5
[19] Nguyen, H., Qian, J.J., Bhatnagar, R.S. and Li, S. (2003) Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels. Biochemical Biophysical Research Communications, 311, 179-186. doi:10.1016/j.bbrc.2003.09.192
[20] Jayakumar, R., New, N., Tokura, S. and Tamura, H. (2007) Sulfated chitin and chitosan as novel biomaterials. International Journal of Biological Macromolecules, 40, 175-181. doi:10.1016/j.ijbiomac.2006.06.021
[21] Cui, X., Zhang, B., Wang, Y. and Gao, Y. (2008) Effects of chitosan-coated pressed calcium sulfate pellet combined with recombinant human bone morphogenetic protein 2 on restoration of segmental bone defect. Journ- al of Craniofacial Surgery, 19, 459-465. doi:10.1097/SCS.0b013e31815ca034
[22] Hirano, S. and Noishiki, Y. (1985) The blood compati- bility of chitosan and N-acylchitosans. Journal of Biom- edical Materials Research, 19, 413-417. doi:10.1002/jbm.820190406
[23] Lee, K.Y., Ha, W.S. and Park, W.H. (1995) Blood comp- atibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials, 16, 1211-1216. doi:10.1016/0142-9612(95)98126-Y
[24] VandeVord, P.J., Matthew, H.W., DeSilva, S.P., Mayton, L., Wu, B. and Wooley, P.H. (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 59, 585-590. doi:10.1002/jbm.1270
[25] Xu, C.J., Guo, F., Gao, Q.P., Wu, Y.F., Jian, X.C. and Peng, J.Y. (2006) Effects of astragalus polysaccharides -chitosan/polylactic acid scaffolds and bone marrow stem cells on repairing supra-alveolar periodontal defects in dogs. ZhongNanDaXueXueBaoYiXueBan, 31, 512-517.
[26] Yeo, Y.J., Jeon, D.W., Kim, C.S., Choi, S.H., Cho, K.S., Lee, Y.K., et al. (2005) Effects of chitosan nonwoven membrane on periodontal healing of surgically created one-wall intrabony defects in beagle dogs. Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 72, 86-93. doi:10.1002/jbm.b.30121
[27] Bumgardner, J.D., Chesnutt, B.M., Yuan, Y., Yang, Y., Appleford, M., Oh, S., et al. (2007) The integration of chitosan-coated titanium in bone: An in vivo study in rabbits. Implant Dentistry, 16, 66-79.
[28] Jayasuriya, A.C. and Kibbe, S. (2010) Rapid biomin- eralization of chitosan microparticles to apply in bone regeneration. Journal of Materials Science: Materials in Medicine, 21, 393-398. doi:10.1007/s10856-009-3874-2
[29] Mizuno, K., Yamamura, K., Yano, K., Osada, T., Saeki, S., Takimoto, N., et al. (2003) Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. Journal of Biom- edical Materials Research, Part A, 64, 177-181. doi:10.1002/jbm.a.10396
[30] Ueno, H., Murakami, M., Okumura, M., Kadosawa, T., Uede, T. and Fujinaga, T. (2001) Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes. Biomaterials, 22, 1667-1673. doi:10.1016/S0142-9612(00)00328-8
[31] Ueno, H., Nakamura, F., Murakami, M., Okumura, M., Kadosawa, T. and Fujinag, T. (2001) Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials, 22, 2125-2130. doi:10.1016/S0142-9612(00)00401-4
[32] Chevrier, A., Hoemann, C.D., Sun, J. and Buschmann, M.D. (2007) Chitosanglycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage, 15, 316-327. doi:10.1016/j.joca.2006.08.007
[33] Park, Y.J., Lee, Y.M., Park, S.N., Sheen, S.Y., Chung, C.P. and Lee, S.J. (2000) Platelet derived growth factor releasing chitosan sponge for periodontal bone rege- neration. Biomaterials, 21, 153-159. doi:10.1016/S0142-9612(99)00143-X
[34] Klokkevold, P.R. and Newman, M.G. (2000) Current status of dental implants: A periodontal perspective. International Journal of Oral & Maxillofacial Implants, 15, 56-65.
[35] Lee, Y.M., Park, Y.J., Lee, S.J., Ku, Y., Han, S.B., Choi, S.M., et al. (2000) Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. Journal of Periodontology, 71, 410-417. doi:10.1902/jop.2000.71.3.410
[36] Kim, I.Y., Seo, S.J., Moon, H.S., Yoo, M.K., Park, I.Y., Kim, B.C., et al. (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26, 1-21. doi:10.1016/j.biotechadv.2007.07.009
[37] Zhang Y., Xu, H.H., Takagi, S. and Chow, L.C. (2006) In-situ hardening hydroxyapatite-based scaffold for bone repair. Journal of Materials Science: Materials in Me- dicine, 17, 437-445. doi:10.1007/s10856-006-8471-z
[38] Xu, H.H., Takagi, S., Quinn, J.B. and Chow, L.C. (2004) Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. Journal of Biomedical Materaials Research: Part A, 68, 725-734. doi:10.1002/jbm.a.20093
[39] Pal, A.K., Pal, T.K., Mukherjee, K. and Pal, S. (1997) Animal experimentation with tooth derived calcium hydroxyapatite based composites as bone-graft substitute biomaterials. Biomedical Sciences Instrumentation, 33, 561-566.
[40] Ma, Z.W,. Zhang, Y.J., Wu, Z.F., Wang, R., Zhu, H., Li, Y., et al. (2008) A study on the effect of the chitosan thermosensitive hydrogel loading recombinant human bone morphogenetic protein-2 on repairing periodontal defects. Hua XiKou QiangYiXueZa Zhi, 26, 23-26.
[41] Zhang, Y., Song, J., Shi, B., Wang, Y., Chen, X., Huang, C., et al. (2007) Combination of scaffold and adenovirus vectors expressing bone morphogenetic protein-7 for alveolar bone regeneration at dental implant defects. Biomaterials, 28, 4635-4642. doi:10.1016/j.biomaterials.2007.07.009

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.