About One-Dimensional Conservative Systems with Position Depending Mass

Abstract

For a one-dimensional conservative system with position depending mass, one deduces consistently a constant of motion, a Lagrangian, and a Hamiltonian for the nonrelativistic case. With these functions, one shows the trajectories on the spaces (x,v) and (x,p) for a linear position depending mass. For the relativistic case, the Lagrangian and Hamiltonian cannot be given explicitly in general. However, we study the particular system with constant force and mass linear dependence on the position where the Lagrangian can be found explicitly, but the Hamiltonian remains implicit in the constant of motion.

Share and Cite:

Velázquez, G. and Prieto, C. (2014) About One-Dimensional Conservative Systems with Position Depending Mass. Journal of Modern Physics, 5, 900-907. doi: 10.4236/jmp.2014.59093.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Goldstein, H. (1950) Classical Mechanics. Addison-Wesley, Cambridge, MA.
[2] Sommerfeld, A. (1964) Lectures on Theoretical Physics. Vo. I Academic Press, Inc., New York.
[3] Gylden, H. (1984) Astronomishe Nachrichten, 109, 11984.
[4] Meshcherskii, I.V. (1983) Astronomishe Nachrichten, 132, 93.
[5] Prieto, C. and Docobo, J.A. (1997) Astronomy and Astrophysics, 318, 657.
[6] Tuiega, C., Jasiski, J., Iwamoto, T. and Chikan, V. (2008) ACS Nano, 2, 1411-1421.
http://dx.doi.org/10.1021/nn700377q
[7] Selm, W., Higazy, A. and Algradee, M. (2011) World Journal of Condensed Matter Physics, 1, 24-32.
http://dx.doi.org/10.4236/wjcmp.2011.12005
[8] Takamobu, O., Kentaro, D., Koichi, N. and Akitomo, T. (2004) Physica Status Solidi (b), 241, 2744-2748.
http://dx.doi.org/10.1002/pssb.200405087
[9] Sierra, L. and Lipparini, E. (1997) Europhysics Letters, 40, 667.
http://dx.doi.org/10.1209/epl/i1997-00520-y
[10] Cavalcate, F.S.A., Costa Filho, R.N., Ribeiro Filho, J., De Almeida, C.A.S. and Freire, P.N. (1997) Physical Review B, 55, 1526.
http://dx.doi.org/10.1103/PhysRevA.55.1526
[11] Bethe, H.A. (1986) Physical Review Letters, 56, 1305.
http://dx.doi.org/10.1103/PhysRevLett.56.1305
[12] Commins, E.D. and Bucksbaum, P.A. (1983) Weak Interactions of Leptons and Quarks. Cambridge University Press, Cambridge.
[13] Lopez, G.V. and Juarez, E.M. (2013) Journal of Modern Physics, 4, 1638-1646.
http://dx.doi.org/10.4236/jmp.2013.412204
[14] Spivak, M. (2010) Physics for Mathematicians, Mechanics I. Publish or Perish Inc., USA.
[15] Von Roos, O. (1983) Physical Review B, 27, 7547.
http://dx.doi.org/10.1103/PhysRevB.27.7547
[16] Li, T.L. and Kuhn, K.J. (1993) Physical Review B, 47, 12760.
http://dx.doi.org/10.1103/PhysRevB.47.12760
[17] Lopez, G.V. (2012) Partial Differential Equations of First Order and Their Application to Physics. World Scientific, Singapore.
[18] John, F. (1974) Partial Differential Equations. Springer-Verlag, New York.
[19] Kobussen, J.A. (1979) ACTA Physica Austriaca, 51, 193.
[20] Leubner, C. (1981) Physics Letters A, 86, 68-70.
http://dx.doi.org/10.1016/0375-9601(81)90166-3
[21] Lopez, G. (1996) Annals of Physics, 251, 372-383.
http://dx.doi.org/10.1006/aphy.1996.0118
[22] Møller, C. (1952) Theory of Relativity. Chapter III, Oxford University Press, Oxford.
[23] Gradsteyn, I.S. and Ryzhik, I.M. (1994) Table of Integrals, Series, and Products. Academic Press, Inc., Boston.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.