[1]
|
Ando, W., et al. (2012) Ovine Synovial Membrane-Derived Mesenchymal Progeneitor Cells Retain the Phenotype of the Original Tissue That Was Exposed to in Vivo Inflammation: Evidence foe a Suppressed Chondrogenic Differential Potential of the Cells. Inflammation Research, 61,599-608. http://dx.doi.org/10.1007/s00011-012-0450-x
|
[2]
|
Horie, M., et al. (2009) Intra-Articular Injected Synovial Stem Cells Differentiate into Meniscal Cells Directly and Promote Meniscal Regeneration without Mobilization to Distant Organs in Rat Massive Meniscal Defects. Stem Cells, 27, 878-887. http://dx.doi.org/10.1634/stemcells.2008-0616
|
[3]
|
Henning, R.J. (2011) Stem Cells in Cardiac Repair. Future Cardiology, 7, 99-117. http://dx.doi.org/10.2217/fca.10.109
|
[4]
|
Williams A.R. and Hare, J.M. (2011) Mesenchymal Stem Cells: Biology, Pathophysiology, Translational Findings and Therapeutic Implications for Cardiac Disease. Circulation Research, 109, 923-940. http://dx.doi.org/10.1161/CIRCRESAHA.111.243147
|
[5]
|
Gullo, F. and De Bari, C. (2013) Prospective Purification of a Subpopulation of Human Synovial Mesenchymal Stem Cells with Enhanced Chondro-Osteogenic Potency. Rheumatology (Oxford), 52, 1758-1768. http://dx.doi.org/10.1093/rheumatology/ket205
|
[6]
|
Li, Z., et al. (2013) Molecular Characterization of Heterogenous Mesenchymal Stem Cells with Single-Cell Transcriptomes. Biotechnology Advances, 31, 312-317. http://dx.doi.org/10.1016/j.biotechadv.2012.12.003
|
[7]
|
Schellenberg, A., et al. (2012) Population Dynamics of Mesenchymal Stromal Cells during Culture Expansion. Cytotherapy, 14, 401-411. http://dx.doi.org/10.3109/14653249.2011.640669
|
[8]
|
Tallone, T., et al. (2011) Adult Human Adipose Tissue Contains Several Types of Multipotent Cells. Journal of Cardiovascular Translation Research, 4, 200-210. http://dx.doi.org/10.1007/s12265-011-9257-3
|
[9]
|
Tolar, J., et al. (2010) Concise Review: Hitting the Right Spot with Mesenchymal Stromal Cells. Stem Cells, 28, 1446-1455. http://dx.doi.org/10.1002/stem.459
|
[10]
|
Mareddy, S., et al. (2009) Proteomic Profiling of Distinct Clonal Populations of Bone Marrow Mesenchymal Stem Cells. Journal of Cell Biochemistry, 106, 776-786. http://dx.doi.org/10.1002/stem.459
|
[11]
|
Ho, A.D., et al. (2007) Heterogeneity of Mesenchymal Stromal Cell Preparations. Cytotherapy, 10, 320-330. http://dx.doi.org/10.1080/14653240802217011
|
[12]
|
Wagner, W. and Ho, A.D. (2007) Mesenchymal Stem Cell Preparations-Comparing Apples and Oranges. Stem Cell Reviews, 3, 239-248. http://dx.doi.org/10.1007/s12015-007-9001-1
|
[13]
|
Phinney, D.G. (2007) Biochemical Heterogeneity of Mesenchymal Stem Cell Populations, Clues to Their Therapeutic Efficacy. Cell Cycle, 6, 2884-2889. http://dx.doi.org/10.4161/cc.6.23.5095
|
[14]
|
Ratajczak, M.Z., et al. (2004) Heterogeneous Populations of Bone Marrow Stem Cells—Are We Spotting on the Same Cells from the Different Angles? Folia Histochemistry and Cyto-biology, 42, 139-146.
|
[15]
|
Sivasubramaniyan, K., et al. (2012) Phenotypic and Functional Heterogeneity of Human Bone Marrow- and Amnion-Derived MSC Subsets. Annals of the New York Academy of Science, 1266, 94-106. http://dx.doi.org/10.1111/j.1749-6632.2012.06551.x
|
[16]
|
De Bari, C., Dell’Accio, F., Vanlauwe, J., Eyckmans, J., Khan, I.M., Archer, C.W., Jones, E.A., McGonagle, D., Mitsiadis, T.A., Pitzalis, C. and Luyten, F.P. (2006) Mesenchymal Multipotency of Adult Human Periosteal Cells Demonstrated by Single-Cell Lineage Analysis. Arthritis and Rheumatism, 54, 1209-1221. http://dx.doi.org/10.1002/art.21753
|
[17]
|
Karystinou, A., Dell’Accio, F., Kurth, T.B.A., Wackerhage, H., Khan, I.M., Archer, C.W., Jones, E.A., Mitsiadis, T.A. and De Bari, C. (2009) Distinct Mesenchymal Progenitor Cell Subsets in the Adult Human Synovium. Rheumatology (Oxford), 48, 1057-1064. http://dx.doi.org/10.1093/rheumatology/kep192
|
[18]
|
Ando, W., Kutcher, J.J., Krawetz, R., Sen, A., Nakamura, N., Frank, C.B. and Hart, D.A. (2014) Clonal Analysis of Synovial Fluid Stem Cells to Characterize and Identify Stable MSC/MPC Phenotypes in a Porcine Model: A Cell Source with Enhance Commitment to the Chondrogenic Lineage. Cytotherapy, 16, 776-788. http://dx.doi.org/10.1016/j.jcyt.2013.12.003
|
[19]
|
Schellenberg, A., Lin, Q., Schüler, H., Koch, C.M., Joussen, S., Denecke, B., Walenda, G., Pallua, N., Suschek, C.V., Zenke, M. and Wagner, W. (2011) Replicative Senescence of Mesenchymal Stem Cells Causes DNA-Methylation Changes Which Correlate with Repressive Histone Marks. Aging, 3, 873-888.
|
[20]
|
Noer, A., Sørensen, A.L., Boquest, A.C. and Collas, P. (2006) Stable CpG Hypomethylation of Adipogenic Promoters in Freshly Isolated, Cultured, and Differentiated Mesenchymal Stem Cells from Adipose Tissue. Molecular Biology of the Cell, 17, 3543-3556. http://dx.doi.org/10.1091/mbc.E06-04-0322
|
[21]
|
Turley, E.A. and Naor, D. (2012) RHAMM and CD44 Peptides-Analytic Tools and Potential Drugs. Frontiers in Bioscience (Landmark Edition), 17, 1775-1794. http://dx.doi.org/10.2741/4018
|
[22]
|
Robert, L., Robert, A.M. and Renard, G. (2010) Biological Effects of Hyaluronan in Connective Tissues, Eye, Skin, Venous Wall. Role in Aging. Pathologie Biologie (Paris), 58, 187-198. http://dx.doi.org/10.1016/j.patbio.2009.09.010
|
[23]
|
Dry, H., et al. (2013) Effect of Calcium on the Proliferation Kinetics of Synovium-Derived Mesenchymal Stromal Cells. Cytotherapy, 15, 805-819. http://dx.doi.org/10.1016/j.jcyt.2013.01.011
|
[24]
|
Gregory, C.A., Ylostalo, J. and Prockop, D.J. (2005) Adult Bone Marrow Stem/Progenitor Cells (MSCs) Are Precon-ditioned by Microenvironmental “Niches” in Culture: A Two-Stage Hypothesis for Regulation of MSC Fate. Science’s STKE, 294, pe37.
|
[25]
|
Hart, D.A. (2014) Perspectives on Endogenous and Exogenous Tissue Engineering Following Injury to Tissues of the Knee. Journal of Biomedical Science and Engineering, 7, 58-66. http://dx.doi.org/10.4236/jbise.2014.72009
|
[26]
|
Ando, W., Tateishi, K., Hart, D.A., Katakai, D., Tanaka, Y., Nakata, K., Hashimoto, J., Fujie, H., Shino, K., Yoshikawa, H. and Nakamura, N. (2007) Cartilage Repair Using an in Vitro Generated Scaffold-Free Tissue-Engineered Construct Derived from Porcine Synovial Mesenchymal Stem Cells. Biomaterials, 28, 5462-5470. http://dx.doi.org/10.1016/j.biomaterials.2007.08.030
|
[27]
|
Shimomura, K., et al. (2010) The Influence of Skeletal Maturity on Allogenic Synovial Mesenchymal Stem Cell-Based Repair of Cartilage in a Large Animal Model. Biomaterials, 31, 8004-8011. http://dx.doi.org/10.1016/j.biomaterials.2010.07.017
|
[28]
|
Matsusaki, M., Kadowaki, K., Tateishi, K., Higuchi, C., Ando, W., Hart, D.A., Tanaka, Y., Take, Y., Akashi, M., Yoshikawa, H. and Nakamura, N. (2009) Scaffold-Free Tissue-Engineered Construct-Hydroxyapatite Composites Generated by an Alternative Soaking Process: Potential for Repair of Bone Defects. Tissue Engineering Part A, 15, 55-63. http://dx.doi.org/10.1089/ten.tea.2007.0424
|
[29]
|
Shimomura, K., et al. (2014) Osteochondral Repair Using a Scaffold-Free Tissue Engineered Construct Derived from Synovial Mesenchymal Stem Cell and a Hydroxyapatite-Based Articifical Bone. Tissue Engineering Part A, in Press. http://dx.doi.org/10.1089/ten.tea.2013.0414
|
[30]
|
Ando, W., Fujie, H., Moriguchi, Y., Nansai, R., Shimomura, K., Hart, D.A., Yoshikawa, H. and Nakamura, N. (2012) Detection of Abnormalities in the Superficial Zone of Cartilage Repaired Using a Tissue Engineered Construct Derived from Synovial Stem Cells. European Cells & Materials, 24, 292-307.
|
[31]
|
Moriguchi, Y., et al. (2013) Repair of Meniscal Lesions Using a Scaffold-Free Tissue-Engineered Construct Derived from Allogenic Synovial MSCs in a Miniature Swine Model. Biomaterials, 34, 2185-2193. http://dx.doi.org/10.1016/j.biomaterials.2012.11.039
|
[32]
|
Nakamura, N., Ando, W., Tateishi, K., Fujie, H., Hart, D.A., Shinomura, K., Kanamoto, T., Kohda, H., Nakata, K., Yoshikawa, H. and Shino, K. (2012) Scaffold-Free Tissue Engineered Construct (TEC) Derived from Synovial Mesenchymal Stem Cells: Characterization and Demonstration of Efficacy to Cartilage Repair in a Large Animal Model. In: Doral, M.N., et al., Eds., Sports Injuries, Springer-Verlag, Berlin, 751-761. http://dx.doi.org/10.1007/978-3-642-15630-4_98
|
[33]
|
Hatsushika, D., Muneta, T., Horie, M., Koga, H., Tsuji, K. and Sekiya, I. (2013) Intraarticular Injection of Synovial Stem Cells Promotes Meniscal Regeneration in a Rabbit Massive Meniscal Defect Model. Journal of Orthopaedic Research, 31, 1354-1359. http://dx.doi.org/10.1002/jor.22370
|
[34]
|
Dutton, A.Q., Choong, P.F., Goh, J.C.H., Lee, E.H. and Hui, J.H.P. (2010) Enhancement of Meniscal Repair in the Avascular Zone Using Mesenchymal Stem Cells in a Porcine Model. Journal of Bone and Joint Surgery (British), 92, 169-175. http://dx.doi.org/10.1302/0301-620X.92B1.22629
|
[35]
|
Pietras, A. (2011) Cancer Stem Cells in Tumor Hetero-geneity. Advances in Cancer Research, 112, 255-281. http://dx.doi.org/10.1016/B978-0-12-387688-1.00009-0
|
[36]
|
Li, Y.Q. and Laterra, J. (2012) Cancer Stem Cells: Distinct Entities or Dynamically Regulated Phenotypes. Cancer Research, 72, 576-580. http://dx.doi.org/10.1158/0008-5472.CAN-11-3070
|
[37]
|
Bu, A. and Cao, D. (2012) The Origin of Cancer Stem Cells. Frontiers of Bioscience, 4, 819-830. http://dx.doi.org/10.2741/S302
|