Waveguide Design Optimization for Long Wavelength Semiconductor Lasers with Low Threshold Current and Small Beam Divergence

DOI: 10.4236/jmp.2011.24031   PDF   HTML     5,958 Downloads   11,531 Views   Citations


Long wavelength GaSb-based quantum well lasers have been optimized for high coupling efficiency into an optical system. Two approaches were used to reduce the vertical far-field. In the first approach we showed the use of V-shaped Weaker Waveguide in the n-cladding layer dramatically reduces vertical beam divergence without any performance degradation compared to a conventional broad-waveguide laser structure. Starting from a broad waveguide laser structure design which gives low threshold current and a large vertical far-field (VFF), the structure was modified to decrease the VFF while maintaining a low threshold-current density. In a first step the combination of a narrow optical waveguide and reduced refractive index step between the waveguide and the cladding layers reduce the VFF from 67? to 42?. The threshold current density was kept low to a value of ~190 A/cm2 for 1000 × 100 µm2 devices by careful adjustment of the doping profile in the p-type cladding layer. The insertion of a V-Shaped Weaker Waveguide in the n-cladding layer is shown to allow for further reduction of the VFF to a value as low as 35? for better light-coupling efficiency into an optical system without any degradation of the device performance. In the second approach, we showed that the use of a depressed cladding structure design also allows for the reduction of the VFF while maintaining low the threshold current density (210 A/cm2), slightly higher value compare to the first design.

Share and Cite:

A. Al-Muhanna, A. Alharbi and A. Salhi, "Waveguide Design Optimization for Long Wavelength Semiconductor Lasers with Low Threshold Current and Small Beam Divergence," Journal of Modern Physics, Vol. 2 No. 4, 2011, pp. 225-230. doi: 10.4236/jmp.2011.24031.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner and J. Koeth, “Novel Helmholtz-based Photoacoustic Sensor for Trace Gas Detection at Ppm Level Using GaInAsSb/GaAlAsSb DFB Lasers,” Spectrochimica Acta A, Vol. 63, No. 5, 2006, pp. 952-958. doi:10.1016/j.saa.2005.11.006
[2] S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard and D. Romanini, “Looking into the Volcano with a Mid IR DFB Diode Laser and Cavity Enhanced Absorption Spectroscopy,” Optics Express, Vol. 14, No. 23, 2006, pp. 11442-11452. doi:10.1364/OE.14.011442
[3] A. Salhi, Y. Rouillard. J. Angellier and M. Garcia, “Very-Low-Threshold 2.4-μm GaInAsSb–AlGaAsSb La- ser Diodes Operating at Room Temperature in the Continuous-Wave Regime,” IEEE Photonics Technology Letters, Vol. 16, No. 5, 2004, pp. 2424-2426. doi:10.1109/LPT.2004.835623
[4] M. Rattunde, C. Mermelstein, J. Schmitz, R. Kiefer, W. Pletschen, M. Walther and J. Wagner, “Comprehensive Modeling of the Electro-Optical-Thermal Behavior of (Algain)(Assb)-Based 2.0 μm Diode Lasers,” Applied Physics Letters, Vol. 80, No. 22, 2002, pp. 4085-4087. doi:10.1063/1.1481979
[5] C. Lin, M. Grau, O. Dier and M. -C. Amann, “Low Threshold Room-Temperature Continuous-Wave Operation of 2.24 - 3.04 μm GaInAsSb/AlGaAsSb Quantum- well Lasers,” Applied Physics Letters, Vol. 84, No. 25, 2004, pp. 5088-5090. doi:10.1063/1.1760218
[6] D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly and S. Y. Narayan, “Ultralow- loss Broadened-Waveguide High-Power 2 μm AlGaAsSb/InGaAsSb/GaSb Separate-Confinement Quantum Well Lasers,” Applied Physics Letters, Vol. 69, No. 7, 1996, pp. 2006-2008. doi:10.1063/1.116861
[7] J. G. Kim, L. Shterengas and G. L. Belenky, “High- Power Room-Temperature Continuous Wave Operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb Diode Lasers,” Applied Physics Letters, Vol. 83, No. 10, 2003, pp. 1926- 1928. doi:10.1063/1.1605245
[8] J. Devenson, O. Cathabard, R. Tessier and A. N. Baranov, “InAs/AlSb Quantum Cascade Lasers Emitting at 2.75-2.97 μm,” Applied Physics Letters, Vol. 91, No. 25, 2007. doi:10.1063/1.2825284
[9] J. Devenson, O. Cathabard, R. Tessier and A. N. Baranov, “High Temperature Operation of λ~3.3 μm Quantum Cascade Lasers,” Applied Physics Letters, Vol. 91, 2007. doi:10.1063/1.2794414
[10] L. Shterengas, G. L. Belenky, T. Hosoda, G. Kipshidze and S. Suchalkin “Continuous Wave Operation of Diode Lasers at 3.36 μm at 12?C,” Applied Physics Letters, Vol. 93, 2008.
[11] M. Rattunde, J. Schmitz, R. Kiefer and J. Wagner, “Comprehensive Analysis of the Internal Losses in 2.0 μm (AlGaIn)(AsSb) Quantum-Well Diode Lasers,” Applied Physics Letters, Vol. 84, No. 23, 2004, pp. 4750- 4752. doi:10.1063/1.1760216
[12] A. Salhi and A. Al-Muhanna, “Self Consistent Analysis of Quantum Well Number Effects on the Performance of 2.3 μm GaSb-Based Quantum Well Laser Diodes,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, 2009, pp. 918-924. doi:10.1109/JSTQE.2008.2012000
[13] FIMMWAVE and HAROLD by Photon Design http://www.photond.com
[14] B. Qiu, S. S. McDougall, X. Liu, G. Bacchin and J. H. Marsh, “Design and Fabrication of Low Beam Divergence and High Kink Free Power Lasers,” IEEE Journal of Quantum Electronics, Vol. 41, No. 9, 2005, pp. 1124- 1130. doi:10.1109/JQE.2005.853359
[15] M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla and J. Wagner, “High Power 1.9 μm Diode Laser Arrays with Reduced Far-Field Angle,” IEEE Photonics Technology Letters, Vol. 18, No. 4, 2006, pp. 628-630. doi:10.1109/LPT.2006.870146

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.