Why E Is Not Equal to mc2

DOI: 10.4236/jmp.2014.59084   PDF   HTML     7,067 Downloads   10,542 Views   Citations

Abstract

We show that Einstein’s famous formula E = mc2 is actually the sum of two quantum parts, namely E = mc2/22 of the quantum particle and E = mc2 (21/22) of the quantum wave. We use first Magueijo-Smolin’s VSL theory to derive the relevant equation and then validate our results using ’tHooft-Veltman’s dimensional regularization. All in all our result confirms the COBE, WMAP, Planck and super nova cosmic measurements with astonishing precision.

Share and Cite:

Naschie, M. (2014) Why E Is Not Equal to mc2. Journal of Modern Physics, 5, 743-750. doi: 10.4236/jmp.2014.59084.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Cox, B. and Forshaw, J. (2010) Why Does E = mc2? Da Capop Press-Perseus Books Group, Philadelphia.
[2] Helal, M.A., Marek-Crnjac, L. and He, J.-H. (2013) Open Journal of Microphysics, 3, 141-145.
http://dx.doi.org/10.4236/ojm.2013.34020
[3] Marek-Crnjac, L. (2013) International Journal of Astronomy and Astrophysics, 3, 464-471.
http://dx.doi.org/10.4236/ijaa.2013.34053
[4] El Naschie, M.S. (2013) Journal of Modern Physics, 4, 591-596.
http://dx.doi.org/10.4236/jmp.2013.45084
[5] El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 121-126.
http://dx.doi.org/10.4236/jqis.2013.34016
[6] Penrose, R. (2004) The Road to Reality. Jonathan Cape, London.
[7] El Naschie, M.S., Rossler, O.E. and Prigogine, I. (1995) Quantum Mechanics, Diffusion and Chaotic Fractals. Pergamon Press/Elsevier, Oxford.
[8] Chirardi, G. (2005) Sneaking a Look at God’s Cards. Princeton University Press, Princeton.
[9] Penrose, R. (1994) Shadows of the Mind. Oxford University Press, Oxford.
[10] El Naschie, M.S. (2012) Revising Einstein’s E = mc2: A Theoretical Resolution of the Mystery of Dark Energy. The Fourth Arab International Conference in Physics and Materials Science, Alexandria, 1-3 October 2012.
[11] He, J.-H. (2012) A Historical Scientific Announcement on Dark Energy.
http://works.bepress.com/ji-huan_he/64.mini-symposium
[12] He, J.-H. (2013) Fractal Space-Time & Non-Commutative Geometry in Quantum & High Energy Physics, 3, 1-2.
[13] He, J.-H. and Marek-Crnjac, L. (2013) Fractal Space-Time & Non-Commutative Geometry in Quantum & High Energy Physics, 3, 130-137.
[14] He, J.-H. and El Naschie, M.S. (2013) Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, 3, 59-62.
[15] El Naschie, M.S. (2013) International Journal of Astronomy and Astrophysics, 3, 483-493.
http://dx.doi.org/10.4236/ijaa.2013.34056
[16] El Naschie, M.S. (2013) American Journal of Modern Physics, 2, 357-361.
http://dx.doi.org/10.11648/j.ajmp.20130206.23
[17] Longair, M. (2006) The Cosmic Century: “A History of Astrophyiscs and Cosmology”. Cambridge University Press, Cambridge.
[18] Ruiz-Lapuente, P. (2010) Dark Energy: Observational and Theoretical Approaches. Cambridge University Press, Cambridge.
[19] Bahcall, J., Piran, T. and Weinberg, S. (2004) Dark Matter in the Universe. World Scientific, Singapore.
[20] Amendola, L. and Tsujikawa, S. (2010) Dark Energy. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511750823
[21] Mortonson, M.J., Weinberg, D.H. and White, M. (2013) Dark Energy. arXiv:1401.0046V1[astro-ph co]
[22] Dingle, H. (1972) Science at the Crossroads. Martin Brian and O’Keefe, London.
[23] Ohanian, H.C. (2009) Studies in History and Philosophy of Science Part B, 40, 167-173.
http://dx.doi.org/10.1016/j.shpsb.2009.03.002
[24] Mc-Crea, W.H. (1967) Nature, 216, 122-124.
http://dx.doi.org/10.1038/216122a0
[25] Overbye, D. (2002) Roll over Einstein. New York Times, 31 December 2002, 2.
[26] Dingle, H. (1973) Nature, 244, 567-568.
http://dx.doi.org/10.1038/244567a0
[27] El Naschie, M.S. (1990) Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw Hill, London, Tokyo.
[28] Heisenberg, W. (1969) Der Teil und das Ganze. R. Piper Verlag, München. (English Edition (1971) Physics and Beyond. Harper and Row, New York.)
[29] El Naschie, M.S. (1994) Chaos, Solitons & Fractals, 4, 1141-1145.
http://dx.doi.org/10.1016/0960-0779(94)90027-2
[30] El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 24, 941-946.
http://dx.doi.org/10.1016/j.chaos.2004.10.001
[31] Dyson, F. (1988) Infinite in all Directions. Harper & Row, New York.
[32] El Naschie, M.S. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 43-54.
http://dx.doi.org/10.4236/ijmnta.2013.21005
[33] Magueijo, J. (2003) Faster than the Speed of Light. Arrow Books, the Random House, London.
[34] Mageuijo, J. and Smolin, L. (2001) Lorentz Invariance with an Invariant Energy Scale. arXiv:hep-th/0112090V2
[35] El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 57-77.
http://dx.doi.org/10.4236/jqis.2013.32011
[36] Marek-Crnjac, L., El Naschie, M.S. and He, J.H. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 78-88.
http://dx.doi.org/10.4236/ijmnta.2013.21A010
[37] Wapner, L.M. (2005) The Pea and the Sun. A.K. Peters Ltd., Wellesley.
[38] ’tHooft, G. (2001) A Confrontation with Infinity. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 1-12.
[39] El Naschie, M.S. (2001) ‘tHooft Dimensional Regularization Implies Transfinite Heterotic String Theory and Dimensional Transmutation. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 81-86.
http://dx.doi.org/10.1007/978-1-4615-1339-1_7
[40] Kaku, M. (1999) Introduction to Superstrings and M-Theory. Springer, New York.
http://dx.doi.org/10.1007/978-1-4612-0543-2
[41] Mason, P. (2010) Quantum Glory. XP Publishing, Arizona.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.