[1]
|
Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511623998
|
[2]
|
Hirota, R. (2004) The Direct Method in Soliton Theory. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511543043
|
[3]
|
Parkes, E.J. and Duffy, B.R. (1996) An Automated tanh-Function Method for Finding Solitary Wave Solutions to Nonlinear Evolution Equations. Computer Physics Communications, 98, 288-300. http://dx.doi.org/10.1016/0010-4655(96)00104-X
|
[4]
|
Fan, E.G. (2000) Extended tanh-Function Method and Its Applications to Nonlinear Equations. Physics Letters A, 277, 212-218. http://dx.doi.org/10.1016/S0375-9601(00)00725-8
|
[5]
|
Yan, C.T. (1996) A Simple Transformation for Nonlinear Waves. Physics Letters A, 224, 77-84. http://dx.doi.org/10.1016/S0375-9601(96)00770-0
|
[6]
|
Wazwaz, A.M. (2003) A Study on Nonlinear Dispersive Partial Differential Equations of Compact and Noncompact Solutions. Applied Mathematics and Computation, 135, 399-409. http://dx.doi.org/10.1016/S0096-3003(02)00005-X
|
[7]
|
Wang, M.L. (1995) Solitary Wave Solutions for Variant Boussinesq Equations. Physics Letters A, 199, 169-172. http://dx.doi.org/10.1016/0375-9601(95)00092-H
|
[8]
|
Wang, M.L., Zhou, Y.B. and Li, Z.B. (1996) Applications of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics. Physics Letters A, 216, 67-75. http://dx.doi.org/10.1016/0375-9601(96)00283-6
|
[9]
|
Liu, S.K., Fu, Z.T. and Liu, S.D. (2001) Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations. Physics Letters A, 289, 69-74. http://dx.doi.org/10.1016/S0375-9601(01)00580-1
|
[10]
|
Fu, Z.T., Liu, S.K. and Liu, S.D. (2001) New Jacobi Elliptic Function Expansion and New Periodic Wave Solutions of Nonlinear Wave Equations. Physics Letters A, 290, 72-76. http://dx.doi.org/10.1016/S0375-9601(01)00644-2
|
[11]
|
Feng, Z.S. (2002) On Explicit Exact Solutions to the Compound Burgers-KdV Equation. Physics Letters A, 293, 57-66. http://dx.doi.org/10.1016/S0375-9601(01)00825-8
|
[12]
|
Feng, Z.S. (2002) Exact Solution to an Approximate Sine-Gordon Equation in (n + 1)-Dimensional Space. Physics Letters A, 302, 64-76. http://dx.doi.org/10.1016/S0375-9601(02)01114-3
|
[13]
|
Chen, Y. and Yan, Z.Y. (2005) New Exact Solutions of (2 + 1)-Dimensional Gardner Equation via the New Sine-Gordon Equation Expansion Method. Chaos, Solitons & Fractals, 26, 399-406. http://dx.doi.org/10.1016/j.chaos.2005.01.004
|
[14]
|
He, J.H. and Wu, X.H. (2006) Exp-Function Method for Nonlinear Wave Equations. Chaos, Solitons & Fractals, 30, 700-708. http://dx.doi.org/10.1016/j.chaos.2006.03.020
|
[15]
|
He, J.H. and Abdou, M.A. (2007) New Periodic Solutions for Nonlinear Evolutions Using Exp-Function Method, Chaos, Solitons & Fractals, 34, 1421-1429. http://dx.doi.org/10.1016/j.chaos.2006.05.072
|
[16]
|
Gao, H. and Zhao, R.X. (2010) New Exact Solutions to the Generalized Burgers-Huxley Equation. Applied Mathematics and Computation, 217, 1598-1603. http://dx.doi.org/10.1016/j.amc.2009.07.020
|
[17]
|
Wang, M.L., Li, X.Z. and Zhang, J.L. (2008) The -Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. Physics Letters A, 372, 417-423. http://dx.doi.org/10.1016/j.physleta.2007.07.051
|
[18]
|
Bekir, A. (2008) Application of the -Expansion Method for Nonlinear Evolution Equations. Physics Letters A, 372, 3400-3406. http://dx.doi.org/10.1016/j.physleta.2008.01.057
|
[19]
|
Wang, M.L., Zhang, J.L. and Li, X.Z. (2008) Application of the -Expansion to Travelling Wave Solutions of the Broer-Kaup and the Approximate Long Water Wave Equations. Applied Mathematics and Computation, 206, 321-326. http://dx.doi.org/10.1016/j.amc.2008.08.045
|
[20]
|
Zhang, J., Wei, X. and Lu, Y. (2008) A generalized -Expansion Method and Its Applications. Physics Letters A, 372, 3653-3658. http://dx.doi.org/10.1016/j.physleta.2008.02.027
|
[21]
|
Zhang, S., Tong, J.L. and Wang, W. (2008) A Generalized -Expansion Method for the mKdV Equation with Variable Coefficients. Physics Letters A, 372, 2254-2257. http://dx.doi.org/10.1016/j.physleta.2007.11.026
|
[22]
|
Zhang, S., Dong, L., Ba, J.M. and Sun, Y.N. (2009) The -Expansion Method for Nonlinear Differential-Difference Equations. Physics Letters A, 373, 905-910. http://dx.doi.org/10.1016/j.physleta.2009.01.018
|
[23]
|
Zhang, H.Q. (2009) New Application of the -Expansion Method. Communications in Nonlinear Science and Numerical Simulation, 14, 3220-3225. http://dx.doi.org/10.1016/j.cnsns.2009.01.006
|
[24]
|
Aslan, I. and Ozis, T. (2009) Analytic Study on Two Nonlinear Evolution Equations by Using the (G’/G)-Expansion Method. Applied Mathematics and Computation, 209, 425-429. http://dx.doi.org/10.1016/j.amc.2008.12.064
|
[25]
|
Ozis, T. and Aslan, I. (2009) Symbolic Computation and Construction of New Exact Traveling Wave Solutions to Fitzhugh-Nagumo and Klein-Gordon Equations. Zeitschrift für Naturforschung, 64a, 15-20.
|
[26]
|
Ozis, T. and Aslan, I. (2009) Symbolic Computations and Exact and Explicit Solutions of Some Nonlinear Evolution Equations in Mathematical Physics. Communications in Theoretical Physics, 51, 577-580. http://dx.doi.org/10.1088/0253-6102/51/4/01
|
[27]
|
Gao, H. and Zhao, R.X. (2009) New Application of the (G’/G)-Expansion Method to Higher-Order Nonliear Equations. Applied Mathematics and Computation, 215, 2781-2786. http://dx.doi.org/10.1016/j.amc.2009.08.041
|
[28]
|
Hereman, W., Banerjee, P.P. and Korpel, A. (1986) Exact Solitary Wave Solutions of Nonliear Evolution and Wave Equations Using a Direct Algebraic Method. Journal of Physics A: Mathematical and General, 19, 607-628. http://dx.doi.org/10.1088/0305-4470/19/5/016
|
[29]
|
Taghizadeh, N., Mirzazadeh, M. and Moosavi Noori, S.R. (2012) Exact Solutions of the Generalized Benjamin Equation and (3 + 1)-Dimensional Gkp Equation by the Extended tanh Method. Applications & Applied Mathematics, 7, 175-187.
|