Application of the Two Nonzero Component Lemma in Resource Allocation


In this paper we will generalize the author's two nonzero component lemma to general self-reducing functions and utilize it to find closed from answers for some resource allocation problems.

Share and Cite:

Seddighin, M. (2014) Application of the Two Nonzero Component Lemma in Resource Allocation. Journal of Applied Mathematics and Physics, 2, 653-661. doi: 10.4236/jamp.2014.27072.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Gustafson, K. and Rao, D. (1997) Numerical Range. Springer, New York.
[2] Gustafson, K. and Seddighin, M. (1989) Antieigenvalue Bounds. Journal of Mathematical Analysis and Applications, 143, 327-340.
[3] Seddighin, M. (2002) Antieigenvalues and Total Antieigenvalues of Normal Operators. Journal of Mathematical Analysis and Applications, 274, 239-254.
[4] Seddighin, M. (2009) Antieigenvalue Techniques in Statistics. Linear Algebra and Its Applications, 430, 2566-2580.
[5] Seddighin, M. and Gustafson, K. (2005) On the Eigenvalues which Express Antieigenvalues. International Journal of Mathematics and Mathematical Sciences, 2005, 1543-1554.
[6] Ibaraki, T. and Katoh, N. (1988) Resource Allocation Problems. The MIT Press, Cambridge.
[7] Cameron, R. and Kouvartakis, B. (1980) Minimizing the Norm of Output Feedback Controllers Used in Pole Placement: A Dyadic Approach. International Journal of Control, 32, 759-770.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.