Adaptive Match-Filtering: A Biomedical Application to Identify T-Wave Alternans

Abstract

T-wave alternans (TWA), consisting in an alternation of the electrocardiographic (ECG) repolarization segment (T-wave), is a promising index of the risk of sudden cardiac death. By definition, it is characterized by a frequency component, termed fTWA, that matches half heart rate. The heart-rate adaptive match filter (AMF) based method is a technique for automatic TWA identification from the digital ECG. Aim of the present study was to provide a complete technical description of the filter able to explain its methodological principles. The AMF is usually realized as a 6th order Butterworth filter with a narrow (0.12 Hz) passing band centered in fTWA. It is applied in a bidirectional fashion, so that final filtering order is 12. While extracting the TWA component, the AMF simultaneously filters out every ECG component including noise and artefacts, and thus results are very robust. Goodness of the technique was tested using 8 synthetic ECG tracings corrupted by typical noisy factors, such as white random noise, baseline wanderings, heart-rate variability, and others. Six ECG tracings were affected by 100 μV TWA, whereas two were not. Results indicate that the AMF-based method is able to prevent false-positive and false-negative detections and, thus, represents a useful tool for a reliable TWA identification.


Share and Cite:

Burattini, L. , Ottaviano, G. , Nardo, F. and Fioretti, S. (2014) Adaptive Match-Filtering: A Biomedical Application to Identify T-Wave Alternans. Natural Science, 6, 709-718. doi: 10.4236/ns.2014.610071.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Montagnana, M., Lippi, G., Franchini, M., Targher, G. and Cesare Guidi, G. (2008) Sudden Cardiac Death: Prevalence, Pathogenesis, and Prevention. Annals of Medicine, 40, 360-375. http://dx.doi.org/10.1080/07853890801964930
[2] Rosenbaum, D.S., Albrecht, P. and Cohen, R.J. (1996) Predicting Sudden Cardiac Death from T Wave Alternans of the Surface Electrocardiogram: Promise and Pitfalls. Journal of Cardiovascular Electrophysiology, 7, 1095-111.
[3] Hlaing, T., DiMino, T., Kowey, P.R. and Yan, G.X. (2005) ECG Repolarization Waves: Their Genesis and Clinical Implications. Annals of Noninvasive Electrocardiology, 10, 211-223. http://dx.doi.org/10.1111/j.1542-474X.2005.05588.x
[4] Zhang, Y., Post, W.S., Blasco-Colmenares, E., Dalal, D., Tomaselli, G.F. and Guallar, E. (2011) Electrocardiographic QT Interval and Mortality: A Meta-Analysis. Epidemiology, 22, 660-670. http://dx.doi.org/10.1097/EDE.0b013e318225768b
[5] Malik, M. (2004) Errors and Misconceptions in ECG Measurement Used for the Detection of Drug Induced QT Interval Prolongation. Journal of Electrocardiology, 37, 25-33. http://dx.doi.org/10.1016/j.jelectrocard.2004.08.005
[6] Malik, M. and Batchvarov, V.N. (2000) Measurement, Interpretation and Clinical Potential of QT Dispersion. Journal of the American College of Cardiology, 36, 1749-1766. http://dx.doi.org/10.1016/S0735-1097(00)00962-1
[7] Hondeghem, L. (2006) Thorough QT/QTc Not So Thorough: Removes Torsadogenic Predictors from the T-Wave, Incriminates Safe Drugs, and Misses Profibrillatory Drugs. Journal of Cardiovascular Electrophysiology, 17, 337-340.
[8] Brennan, T.P. and Tarassenko, L. (2012) Review of T-Wave Morphology-Based Biomarkers of Ventricular Repolarisation Using the Surface Electrocardiogram. Biomedical Signal Processing and Control, 7, 278-284. http://dx.doi.org/10.1016/j.bspc.2011.05.010
[9] Hou, Y., Fang, P.-H., Wu, Y., Li, X.-F., Liu, J., Li, Z., Lei, S. and Shu, Z. (2012) Prediction of Sudden Cardiac Death in Patients after Acute Myocardial Infarction Using T-Wavealternans: A Prospective Study. Journal of Electrocardiology, 45, 60-65. http://dx.doi.org/10.1016/j.jelectrocard.2011.07.015
[10] Man, S., De Winter, P.V., Maan, A.C., Thijssen, J., Borleffs, C.J. van Meerwijk, W.P., Bootsma, M., van Erven, L., van der Wall, E.E., Schalij, M.J., Burattini, L., Burattini, R. and Swenne, C.A. (2011) Predictive Power of T-Wave Alternans and of Ventricular Gradient 2 Hysteresis for the Occurrence of Ventricular Arrhythmias in Primary Prevention ICD Patients. Journal of Electrocardiology, 44, 453-459. http://dx.doi.org/10.1016/j.jelectrocard.2011.05.004
[11] Leino, J., Minkkinen, M., Nieminen, T., Lehtim?ki, T., Viik, J., Lehtinen, R., Nikus, K., K??bi, T., Turjanmaa, V., Verrier, R.L. and K?h?nen, M. (2009) Combined Assessment of Heart Rate Recovery and T-Wave Alternans during Routine Exercise Testing Improves Prediction of Total and Cardiovascular Mortality: The Finnish Cardiovascular Study. Heart Rhythm, 6, 1765-1771. http://dx.doi.org/10.1016/j.hrthm.2009.08.015
[12] Maeda, S., Nishizaki, M., Yamawake, N., Ashikaga, T., Shimada, H., Asano, M., Ihara, K., Murai, T., Suzuki, H., Fujii, H., Sakurada, H., Hiraoka, M. and Isobe, M. (2009) Ambulatory ECG-Based T-Wave Alternans and Heart Rate Turbulence Predict High Risk of Arrhythmic Events in Patients with Old Myocardial Infarction. Circulation Journal, 73, 2223-2228. http://dx.doi.org/10.1253/circj.CJ-09-0420
[13] Sakaki, K., Ikeda, T., Miwa, Y., Miyakoshi, M., Abe, A., Tsukada, T., Ishiguro, H., Mera, H., Yusu S. and Yoshino, H. (2009) Time-Domain T-Wave Alternans Measured from Holter Electrocardiograms Predicts Cardiac Mortality in Patients with Left Ventricular Dysfunction: A Prospective Study. Heart Rhythm, 6, 332-337. http://dx.doi.org/10.1016/j.hrthm.2008.12.011
[14] Hohnloser, S.H. (2008) T-Wave Alternans: A Pathophysiological Link to Human Ventricular Tachyarrhythmias. Heart Rhythm, 5, 677-678. http://dx.doi.org/10.1016/j.hrthm.2008.02.023
[15] Stein, P.K., Sanghavi, D., Domitrovich, P.P., Mackey, R.A. and Deedwania, P. (2008) Ambulatory ECG-Based T- Wave Alternans Predicts Sudden Cardiac Death in High-Risk Post-MI Patients with Left Ventricular Dysfunction in the EPHESUS Study. Journal of Cardiovascular Electrophysiology, 19, 1037-1042. http://dx.doi.org/10.1111/j.1540-8167.2008.01225.x
[16] Klingenheben, T., Zabel, M., D’Agostino, R.B., Cohen, R.J. and Hohnloser, S.H. (2000) Predictive Value of T-Wave Alternans for Arrhythmic Events in Patients with Congestive Heart Failure. Lancet, 356, 651-652. http://dx.doi.org/10.1016/S0140-6736(00)02609-X
[17] Martínez, J.P. and Olmos, S. (2005) Methodological Principles of T Wave Alternans Analysis: A Unified Framework. IEEE Transactions on Biomedical Engineering, 52, 599-613. http://dx.doi.org/10.1109/TBME.2005.844025
[18] Bini, S. and Burattini, L. (2013) Quantitative Characterization of Repolarization Alternans in Terms of Amplitude and Location: What Information from Different Methods? Biomed Signal Process Control, 8, 675-681. http://dx.doi.org/10.1016/j.bspc.2013.06.012
[19] Burattini, L., Bini, S. and Burattini, R. (2009) Comparative Analysis of Methods for Automatic Detection and Quantification of Microvolt T-Wave Alternans. Medical Engineering & Physics, 31, 1290-1298. http://dx.doi.org/10.1016/j.medengphy.2009.08.009
[20] Burattini, L., Zareba, W. and Burattini, R. (2008) Adaptive Match Filter Based Method for Time vs. Amplitude Characterization of Microvolt ECG T-Wave Alternans. Annals of Biomedical Engineering, 36, 1558-1564. http://dx.doi.org/10.1007/s10439-008-9528-6
[21] Burattini, L., Bini, S. and Burattini, R. (2011) Automatic Microvolt T-Wave Alternans Identification in Relation to ECG Interferences Surviving Preprocessing. Medical Engineering & Physics, 33, 17-30. http://dx.doi.org/10.1016/j.medengphy.2010.08.014
[22] Burattini, L., Zareba, W. and Burattini, R. (2009) Assessment of Physiological Amplitude, Duration and Magnitude of ECG T-Wave Alternans. Annals of Noninvasive Electrocardiology, 14, 366-374. http://dx.doi.org/10.1111/j.1542-474X.2009.00326.x
[23] Burattini, L., Zareba, W. and Burattini, R. (2010) Identification of Gender-Related Normality Regions for T-Wave Alternans. Annals of Noninvasive Electrocardiology, 15, 328-336. http://dx.doi.org/10.1111/j.1542-474X.2010.00388.x
[24] Burattini, L., Bini, S. and Burattini, R. (2012) Repolarization Alternans Heterogeneity in Healthy Subjects and Acute Myocardial Infarction Patients. Medical Engineering & Physics, 34, 305-312. http://dx.doi.org/10.1016/j.medengphy.2011.07.019
[25] Burattini, L., Man, S., Burattini, R. and Swenne, C.A. (2012) Comparison of Standard vs. Orthogonal ECG Leads for T-Wave Alternans Identification. Annals of Noninvasive Electrocardiology, 17, 130-140. http://dx.doi.org/10.1111/j.1542-474X.2012.00490.x
[26] Burattini, L., Man, S. and Swenne, C.A. (2013) T-Wave Alternans Dependency on T-Wave Amplitude in Exercise Electrocardiographic Recordings. International Journal of Bioelectromagnetism, 15, 90-96.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.