A Method for Finding Optimal Parameter Values Using Bifurcation-Based Procedure


In dynamical systems, the system suddenly becomes unstable due to parameter perturbation which corresponds to environmental changes or major incidents. To avoid such instabilities in engineering systems, tuning system parameters is very important. In this paper, we propose a method for obtaining optimal parameter values in a parameterized dynamical system. Here, the optimal value means the farthest point from the bifurcation curves in a bounded parameter plane. As illustrated examples, we show the results of continuous-time and discrete-time systems. Our algorithm can find the optimal parameter values in both systems.

Share and Cite:

Kitajima, H. and Yoshinaga, T. (2014) A Method for Finding Optimal Parameter Values Using Bifurcation-Based Procedure. International Journal of Modern Nonlinear Theory and Application, 3, 37-43. doi: 10.4236/ijmnta.2014.32006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mackey, M. and Glass, L. (1997) Oscillation and Chaos in Physiological Control System. Science, 197, 287-289.
[2] Glass, L. and Mackey, M. (1979) Pathological Conditions Resulting from Instabilities in Physiological Control System. Annals of the New York Academy of Sciences, 316, 214-235. http://dx.doi.org/10.1111/j.1749-6632.1979.tb29471.x
[3] Basso, M., Genesio, R. and Tesi, A. (1997) A Frequency Method for Predicting Limit Cycle Bifurcations. Nonlinear Dynamics, 13, 339-360. http://dx.doi.org/10.1023/A:1008298205786
[4] Berns, D.W., Moiola, J.L. and Chen, G. (1998) Predicting Period-Doubling Bifurcations and Multiple Oscillations in Nonlinear Time-Delayed Feedback Systems, Circuits and Systems I: Fundamental Theory and Applications. IEEE Transactions, 45, 759-763. http://dx.doi.org/10.1109/81.703844
[5] Chen, G., Moiola, J.L. and Wang, H.O. (2000) Bifurcation Control: Theories, Methods, and Applications. International Journal of Bifurcation and Chaos, 10, 511-548.
[6] Xie, Y., Chen, L., Kang, Y.M. and Aihara, K. (2008) Controlling the Onset of Hopf Bifurcation in the Hodgkin-Huxley Model. Physical Review E, 77, 061921. http://dx.doi.org/10.1103/PhysRevE.77.061921
[7] Overton, M.L. (1988) On Minimizing the Maximum Eigenvalue of a Symmetric Matrix. SIAM Journal on Matrix Analysis and Applications, 9, 256-268. http://dx.doi.org/10.1137/0609021
[8] Shapiro, A. and Fan, M.K.H. (1995) On Eigenvalue Optimization. SIAM Journal on Optimization, 5, 552-569.
[9] Imae, J., Furudate, T. and Sugawara, S. (1997) A Simple Numerical Method for Minimizing the Maximum Eigenvalues of Symmetric Matrices via Nonlinear Differential Equation Solvers. Transactions of the Japan Society of Mechanical Engineers, 63, 87-92.
[10] Dobson, I. (1993) Computing a Closest Bifurcation Instability in Multidimensional Parameter Space. Journal of Nonlinear Science, 3, 307-327. http://dx.doi.org/10.1007/BF02429868
[11] Kremer, G.G. (2001) Enhanced Robust Stability Analysis of Large Hydraulic Control Systems via a Bifurcation-Based Procedure. Journal of the Franklin Institute, 338, 781-809.
[12] Lu, J., Engl, H.W. and Schuster, P. (2006) Inverse Bifurcation Analysis: Application to Simple Gene Systems. Algorithms for Molecular Biology, 1, 1-16. http://dx.doi.org/10.1186/1748-7188-1-11
[13] Dobson, I. and Lu, L. (1993) New Methods for Computing a Closest Saddle Node Bifurcation and Worst Case Load Power Margin for Voltage Collapse. IEEE Transactions on Power Systems, 8, 905-913.
[14] De Souza, A.C.Z., Canizares, C.A. and Quintana, V.H. (1997) New Techniques to Speed Up Voltage Collapse Computations Using Tangent Vectors. IEEE Transactions on Power Systems, 12, 1380-1387.
[15] Monnigmann, M. and Marquardt, W. (2002) Normal Vectors on Manifolds of Critical Points for Parametric Robustness of Equilibrium Solutions of ODE Systems. Journal of Nonlinear Science, 12, 85-112.
[16] Vahidi, B., Azadani, E.N., Divshali, P.H., Hessaminia, A.H. and Hosseinian, S.H. (2010) Novel Approach for Determination of Worst Loading Direction and Fast Prediction of Stability Margin in Power Systems. Simulation, 86, 729-741. http://dx.doi.org/10.1177/0037549709106507
[17] Tsumoto, K., Ueta, T., Yoshinaga, T. and Kawakami, H. (2012) Bifurcation Analyses of Nonlinear Dynamical Systems: From Theory to Numerical Computations, Nonlinear Theory and Its Applications. IEICE, 3, 458-476.
[18] Kawakami, H. and Kobayashi, K. (1979) Computer Experiments on Chaotic Solutions of x(t + 2) ax(t + 1) x2(t) = b. Bulletin of the Faculty of Engineering, Tokushima University, 16, 29-46.
[19] Mira, C., Fournier-Prunaret, D., Gardini, L., Kawakami, H. and Cathala, J.C. (1994) Basin Bifurcations of Two-Dimensional Noninvertible Maps: Fractalization of Basins. International Journal of Bifurcation and Chaos, 4, 343-381.
[20] Kawakami, H. (1984) Bifurcation of Periodic Responses in Forced Dynamic Nonlinear Circuits: Computation of Bifurcation Values of the System Parameters. IEEE Transactions on Circuits and Systems, CAS-31, 248-260.
[21] Kitajima, H. and Kawakami, H. (1995) An Algorithm Tracing out the Tangent Bifurcation Curves and Its Application to Duffing’s Equation. IEICE Transactions on Fundamentals, J78, 806-810.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.