An Examination of the Effects of Aerosol ChemicalComposition and Size on Radiative Properties of Multi-Component Aerosols
Shaocai Yu, Yang Zhang
.
DOI: 10.4236/acs.2011.12003   PDF    HTML     4,913 Downloads   10,093 Views   Citations

Abstract

The sensitivity of aerosol radiative properties (i.e., scattering coefficient, extinction coefficient, single scatter albedo, and asymmetry factor) and radiation transmission to aerosol composition, size distributions, and relative humidity (RH) is examined in this paper. Mie calculations and radiation calculations using a tropospheric visible radiation model are performed. The aerosol systems considered include inorganic and organic ions (e.g., Cl-, Br-, , , Na+, , K+, Ca2+, Mg2+, HCOO-, CH3COO-, CH3CH2COO-, CH3COCOO-, OOCCOO2-, MSA1-), and (2) water-insoluble inorganic and organic compounds e.g., (black carbon, n-alkanes, SiO2, Al2O3, Fe2O3 and other organic compounds). The partial molar refraction method and the volume-average method are used to calculate the real and imaginary parts of refractive index of real aerosols, respectively. The sensitivity simulations show that extinction coefficient increases by 70% when RH varies from 0 to 80%. Both extinction coefficient and asymmetry factor increase by ~48% when real part varies from 1.40 to 1.65. Scattering coefficient and single scattering albedo decrease by 18% and 24%, respectively, when the imaginary part varies from –0.005 to –0.1. Scattering and extinction coefficients increase by factors of 118 and 123, respectively, when the geometric mean radius varies from 0.05 to 0.3 ?m. Scattering and extinction coefficients and asymmetry factor increase by factors of 389, 334, and 5.4, respectively, when geometric standard deviation varies from 1.2 to 3.0. The sensitivity simulations using a tropospheric visible radiation model show that the radiation transmission is very sensitive to the change in geometric mean radius and standard deviation; other factors are insignificant.

Share and Cite:

S. Yu and Y. Zhang, "An Examination of the Effects of Aerosol ChemicalComposition and Size on Radiative Properties of Multi-Component Aerosols," Atmospheric and Climate Sciences, Vol. 1 No. 2, 2011, pp. 19-32. doi: 10.4236/acs.2011.12003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. J. Charlson, S.E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen and D. J. Hofmann, “Climate Forcing by Anthropogenic Aerosols,” Science, Vol. 225, 1992, pp. 423-430. doi:10.1126/science.255.5043.423
[2] S. C. Yu, “The Role of Organic Acids (Formic, Acetic, Pyruvic and Oxalic) in the Formation of Cloud Condensation Nuclei (CCN): A Review,” Atmospheric Research, Vol. 53, 2000, pp. 185-217. doi:10.1016/S0169-8095(00)00037-5
[3] S. C. Yu, V. K. Saxena and Z. Zhao, “A Comparison of Signals of Regional Aerosol-Induced Forcing in Eastern China and the Southeastern United States,” Geophysical Research Letters, Vol. 28, 2001, pp. 713-716. doi:10.1029/2000GL011834
[4] Intergovernmental Panel on Climate Change (IPCC), “Climate Change 2007: The Physical Science Basis,” Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 2007.
[5] J. E. Penner, R. J. Charlson, J. M. Hales, N. S. Laulainen, R. Leifer, T. Novakov, J. Ogren, L. F. Radke, S. E. Schwartz and L. Travis, “Quantifying and Minimizing Uncertainty of Climate Forcing by Anthropogenic Aerosols,” Bulletin of the American Meteorological Society, Vol. 75, 1994, pp. 375-400. doi:10.1175/1520-0477(1994)075<0375:QAMUOC>2.0.CO;2
[6] O. Boucher and T. L. Anderson, “General Circulation Model Assessment of The Sensitivity of Direct Climate Forcing by Anthropogenic Sulfate Aerosols to Aerosol Size and Chemistry,” Journal of Geophysical Research, Vol. 100, 1995, pp. 26117-26134. doi:10.1029/95JD02531
[7] M. Z. Jacobson, “Global Direct Radiative Forcing Due to Multicomponent Anthropogenic and Natural Aerosols,” Journal of Geophysical Research, Vol. 106, 2001, pp. 1551-1568. doi:10.1029/2000JD900514
[8] D. Koch, S. Bauer, A. Del Genio, G. Faluvegi, J. R. McConnell, S. Menon, R. L. Miller, D. Rind, R. Ruedy, G. A. Schmidt and D. Shindell, “Coupled Aerosol-Chemistry-Climate Twentieth Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses,” Journal of Climate, 2011.
[9] W. F. Rogge, M. A. Mazurek, L. M. Hildemann, G. R. Cass and B. R. T. Simoneit, “Quantification of Urban Organic Aerosols at a Molecular Level: Identification, Abundance and Seasonal Variation,” Atmospheric Environment, Vol. 27, 1993, pp. 1309-1330.
[10] G. H?nel, “The Properties of Atmospheric Aerosol Particles as Functions of Relative Humidity at Thermodynamic Equilibrium with the Surrounding Air,” Advances in Geophysics, Vol. 19, 1976, pp. 73-188. doi:10.1016/S0065-2687(08)60142-9
[11] R. F. Pueschel, “Atmospheric Aerosols,” In: Singh H. B.,Van Nostrand Reinhold, Eds., Composition, Chemistry and Climate of the Atmsopher, 1995, pp. 120-175.
[12] P. Chylek and J. Wong, “Effect of absorbing aerosols on global radiation budget, Geophysical Research Letters, Vol. 22, No. 8, 1995, pp. 929-931. doi:10.1029/95GL00800
[13] J. J. Huntzicker, R. L. Johnson, J. J. Shah and R. A. Cary, “Analysis of Organic and Elemental Carbon in Ambient Aerosols by a Thermal-Optical Method,” In: Particulate Carbon: Atmospheric Life Using a Particle Trap Impactor/Denuder Sampler, Environmental Science & Technology, Vol. 35, No. 24, 1982, pp. 4857-4867.
[14] A. W. Stelson, “Urban Aerosol Refractive Index Prediction by Partial Molar Refraction Approach,” Environmental Science & Technology, Vol. 24, 1990, pp. 1676-1679. doi:10.1021/es00081a008
[15] R. C. Weast, CRC Handbook of Chemical and Physics, Cleveland, OH, 1988.
[16] F. Volz, “Infrared Absorption by Atmsopheric Aerosol Substances,” Journal of Geophysical Research, Vol. 77, 1972, pp. 1017-1031. doi:10.1029/JC077i006p01017
[17] C. S. Sloane, “Optical properties of aerosols of mixed composition,” Atmospheric Environment, Vol. 18, 1984, pp. 871-878. doi:10.1016/0004-6981(84)90273-7
[18] I. N. Tang, W. T. Wong and H. R. Munkelwiz, “The Relative Importance of Atmospheric Sulfates and Nitrates in Visibility Reduction,” Atmospheric Environment, Vol. 15, 1981, pp. 2463-2471. doi:10.1016/0004-6981(81)90062-7
[19] H. Horvath, “Atmospheric Light Absorption - a Review,” Atmospheric Environment, Vol. 27, 1993, pp. 293-317.
[20] G. W. Grams, I. H. Blifford, D. A. Gillette and P. B. Russell, “Complex Index of Refraction of Airborne Soil Particles,” Journal of Applied Meteorology, Vol. 13, 1974, pp. 459-471. doi:10.1175/1520-0450(1974)013<0459:CIOROA>2.0.CO;2
[21] J. V. Dave, “Subroutines for Computing the Parameters of Electomagnetic Radiation Scattered by a Sphere,” IBM Journal of Research and Development, Vol. 13, 1969, pp. 302-312. doi:10.1147/rd.133.0302
[22] R. J. Charlson, D. S. Covert and T. V. Larson, “Observa- tions of the effect of humidity on light scattering by aerosols,” In: Ruhnke T. H. and Deepak A., Eds., Hygroscopic Aerosols, pp. 35-44, Hampton, VA, 1984.
[23] D. Hegg, T. Larson and P. F. Yuen, “A Theoretical Study of the Effect of Relative Humidity on Light Scattering by Tropospheric Aerosols,” Journal of Geophysical Research, Vol. 98, 1993, pp. 18435-18439. doi:10.1029/93JD01928
[24] C. Pilinis, S. N. Pandis and J. H. Seifeld, “Sensitivity of Direct Climate Forcing by Atmospheric Aerosols to Aerosol Size and Composition,” Journal of Geophysical Research, Vol. 100, 1995, pp. 18739-18754. doi:10.1029/95JD02119
[25] A. Meszaros, “On the Concentration and Size Distribution of Atmospheric Sulfate Particles under Rural Conditions,” Atmospheric Environment, Vol. 12, 1978, pp. 2425-2428. doi:10.1016/0004-6981(78)90286-X
[26] W. A. Hoppel, R. Larson and M. A. Vietti, “Aerosol Size Distributions at a Site on the East Coast of the United States,” Atmospheric Environment, Vol. 18, 1984, pp. 1613-1621. doi:10.1016/0004-6981(84)90383-4
[27] S. C. Gathman, “Optical Properties of the Maritime Aerosols as Predicted by the Navy Aerosol Model,” Optical Engineering, Vol. 22, 1983, pp. 56-62.
[28] S. Madronich, “Tropospheric Photochemistry and Its Response to UV Changes,” In: M. L. Chanin, Ed., The role of the stratosphere in global change, NATO-ASI Series, Vol. 18, pp. 437-461, Springer-Verlag, Amsterdam, 1993.
[29] E. A. Moelwyn-Hughes, Physical Chemistry, 2nd rev. ed., Pergamon Press, New York, 1961.
[30] K. T. Whitby, “The Physical Characteristics of Sulfur Aerosols,” Atmospheric Environment, Vol. 12, 1978, pp. 135-159. doi:10.1016/0004-6981(78)90196-8
[31] W. R. Leaitch and G. A. Isaac, “Tropospheric Aerosol Size Distributions from 1982 to 1988 over Eastern North America,” Atmospheric Environment, Vol. 25, 1991, pp. 601-619.
[32] S. G. Jennings, C. D. O’Dowd, T. C. O’Connor and F. M. McGovern, “Physical Characteristics of Ambient Aerosol at Mace Head,” Atmospheric Environment, Vol. 25A, 1991, pp. 557-562.
[33] R. Jaenicke and L. Schiitz, “Arctic Aerosol in Surface Air,” ldoyaras 86, 1982235-241

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.