[1]
|
El-Desouky, B.S. (2011) Generalized String Numbers of the First Kind: Modified Approach. Journal of Pure and Mathematics: Advances and Applications, 5, 43-59.
|
[2]
|
Gould, H.W. (1964) The Operator and Stirling Numbers of the First Kind. The American Mathematical Monthly, 71, 850-858. http://dx.doi.org/10.2307/2312391
|
[3]
|
Comtet, L. (1972) Nombres de stirling généraux et fonctions symétriques. Comptes Rendus de l’Académie des Sciences (Series A), 275, 747-750.
|
[4]
|
Comtet, L. (1974) Ad-vanced Combinatorics: The Art of Finite and Infinite Expiations. D. Reidel Publishing Company, Dordrecht, Holand. http://dx.doi.org/10.1007/978-94-010-2196-8
|
[5]
|
Comtet, L. (1973) Une formule explicite pour les puissances successive de l’operateur derivation de Lie. Comptes Rendus de l’Académie des Sciences (Series A), 276, 165-168.
|
[6]
|
El-Desouky, B.S. and Cakic, N.P. (2011) Generalized Higher Order Stirling Numbers. Mathematical and Computer Modelling, 54, 2848-2857. http://dx.doi.org/10.1016/j.mcm.2011.07.005
|
[7]
|
Blasiak, P. (2005) Combinatorics of Boson Normal Ordering and Some Applica-tions. PhD Thesis, University of Paris, Paris. http://arxiv.org/pdf/quant-ph/0507206.pdf
|
[8]
|
Blasiak, P., Penson, K.A. and Solomon, A.I. (2003) The General Boson Normal Ordering Problem. Physics Letters A, 309, 198-205. http://dx.doi.org/10.1016/S0375-9601(03)00194-4
|
[9]
|
Cakic, N.P. (1980) On Some Combinatorial Identities. Applicable Analysis and Discrete Mathematics, 678-715, 91-94.
|
[10]
|
Carlitz, L. (1932) On Arrays of Numbers. American Journal of Mathematics, 54, 739-752.
http://dx.doi.org/10.2307/2371100
|
[11]
|
El-Desouky, B.S., Cakic, N.P. and Mansour, T. (2010) Modified Approach to Generalized Stirling Numbers via Differential Operators. Applied Mathematics Letters, 23, 115-120. http://dx.doi.org/10.1016/j.aml.2009.08.018
|
[12]
|
Viskov, O.V. and Srivastava, H.M. (1994) New Approaches to Certain Identities Involving Differential Operators. Journal of Mathematical Analysis and Applications, 186, 1-10. http://dx.doi.org/10.1006/jmaa.1994.1281
|
[13]
|
Macdonald, I.G. (1979) Symmetric Functions and Hall Polynomials. Clarendon (Oxford University) Press, Oxford, London and New York.
|
[14]
|
Choi, J. and Srivastava, H.M. (2011) Some Summation Formulas Involving Harmonic Numbers and Generalized Harmonic Numbers. Mathematical and Computer Modelling, 54, 2220-2234.
http://dx.doi.org/10.1016/j.mcm.2011.05.032.
|