[1]
|
Sandstede, G. (1992) Decomposition of Hydrocarbons into Hydrogen and Carbon for the CO2-Free Production of Hydrogen. 9th World Hydrogen Energy Conference, Paris, 22-25 June 1992, 1745.
|
[2]
|
Haryanto, A., Fernando, S., Murali, N. and Adhikari, S. (2005) Current Status of Hydrogen Production Techniques by steam Reforming of Ethanol: A Review. Energy Fuels, 19, 2098-2106. http://dx.doi.org/10.1021/ef0500538
|
[3]
|
Muradov, N. (2001) Catalysis of Methane Decomposition over Elemental Carbon. Catalysis Communications, 2, 89-94. http://dx.doi.org/10.1016/S1566-7367(01)00013-9
|
[4]
|
Mariňo, F., Boveri, M., Baronetti, G. and Laborde, M. (2001) Hydrogen Production from Steam Reforming of Bio-ethanol Using Cu/Ni/K/γ-Al2O3 Catalysts. Effect of Ni. International Journal of Hydrogen Energy, 26, 665-668. http://dx.doi.org/10.1016/S0360-3199(01)00002-7
|
[5]
|
Diagne, C., Idriss, H. and Kiennemann, A. (2002) Hydrogen Production by Ethanol Reforming over Rh/CeO2-ZrO2 Catalysts. Catalysis Communications, 3, 565-571. http://dx.doi.org/10.1016/S1566-7367(02)00226-1
|
[6]
|
Ojeda, M. and Iglesia, E. (2009) Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures. Angewandte Chemie International Edition, 48, 4800-4803. http://dx.doi.org/10.1002/anie.200805723
|
[7]
|
Koós, á. and Solymosi, F. (2010) Production of CO-free H2 by Formic Acid Decomposition over MO2C/Carbon Catalysts. Catalysis Letters, 138, 23-27. http://dx.doi.org/10.1007/s10562-010-0375-3
|
[8]
|
Bulushev, D.A., Beloshapkin, S. and Ross, J.R.H. (2010) Hydrogen from Formic Acid Decomposition over Pd and Au Catalysts. Catalysis Today, 154, 7-12. http://dx.doi.org/10.1016/j.cattod.2010.03.050
|
[9]
|
Zhou, X., Huang, Y., Xing, W., Liu, C., Liao, J. and Lu, T. (2008) High-Quality Hydrogen from the Catalyzed Decomposition of Formic Acid by Pd-Au/C and Pd-Ag/C. Chemical Communications, 3540-3542. http://dx.doi.org/10.1039/b803661f
|
[10]
|
Solymosi, F., Koós, á., Liliom, N. and Ugrai, I. (2011) Production of CO-free H2 from Formic Acid. A Comparative Study of the Catalytic Behaviour of Pt Metals on a Carbon Support. Journal of Catalysis, 279, 213-219. http://dx.doi.org/10.1016/j.jcat.2011.01.023
|
[11]
|
Gazsi, A., Bánsági, T. and Solymosi, F. (2011) Decomposition and Reforming of Formic Acid on Supported Au Catalysts: Production of CO-Free H2. Journal of Physical Chemistry C, 115, 15459-15466. http://dx.doi.org/10.1021/jp203751w
|
[12]
|
Linsebigler, A., Lu, G. and Yates, Jr., J.T. (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735-758. http://dx.doi.org/10.1021/cr00035a013
|
[13]
|
Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. (1995) Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96. http://dx.doi.org/10.1021/cr00033a004
|
[14]
|
Halasi, Gy., Schubert, G. and Solymosi, F. (2012) Photodecomposition of Formic Acid on N-Doped and Metal-Promoted TiO2. Production of CO-Free H2. Journal of Physical Chemistry C, 116, 15396-15405. http://dx.doi.org/10.1021/jp3030478
|
[15]
|
Galvita, V.V., Semin, G.L., Belyaev, V.D., Yurieva, T.M. and Sobyanin, V.A. (2001) Production of Hydrogen from Dimethyl Ether. Applied Catalysis A: General, 216, 85-90. http://dx.doi.org/10.1016/S0926-860X(01)00540-3
|
[16]
|
Takeishi, K. and Suzuki, H. (2004) Steam Reforming of Dimethyl Ether. Applied Catalysis A: General, 260, 111-117. http://dx.doi.org/10.1016/j.apcata.2003.10.006
|
[17]
|
Nishiguchi, T., Oka, K., Matsumoto, T., Kanai, H., Utani, K. and Imamura, S. (2004) Durability of WO3/ZrO2- CuO/CeO2 Catalysts for Steam Reforming of Dimethyl Ether. Applied Catalysis A: General, 301, 66-74. http://dx.doi.org/10.1016/j.apcata.2005.11.011
|
[18]
|
Faungnawakij, K., Tanaka, Y., Shimoda, N., Fukunaga, T., Kawashima, S., Kikuchi, R. and Eguchi, K. (2006) Influence of Solid-Acid Catalysts on Steam Reforming and Hydrolysis of Dimethyl Ether for Hydrogen Production. Applied Catalysis A: General, 304, 40-48. http://dx.doi.org/10.1016/j.apcata.2006.02.021
|
[19]
|
Kawabata, T., Matsuoka, H., Shishido, T., Li, D., Tian, Y., Sano, T. and Takehira, K. (2006) Steam Reforming of Dimethyl Ether over ZSM-5 Coupled with Cu/ZnO/Al2O3 Catalyst Prepared by Homogeneous Precipitation. Applied Catalysis A: General, 308, 82-90. http://dx.doi.org/10.1016/j.apcata.2006.04.032
|
[20]
|
Semelsberger, T.A., Ott, K.C., Borup, R.L. and Greene, H.L. (2005) Generating Hydrogen-Rich Fuel-Cell Feeds from Dimethyl Ether (DME) Using Physical Mixtures of a Commercial Cu/Zn/Al2O3 Catalyst and Several Solid-Acid Catalysts. Applied Catalysis B: Environmental, 65, 291-300. http://dx.doi.org/10.1016/j.apcatb.2006.02.015
|
[21]
|
Fukunaga, T., Ryomon, N. and Shimazo, S. (2008) The Influence of Metals and Acidic Oxide Species on the Steam Reforming of Dimethyl Ether (DME). Applied Catalysis A: General, 348, 193-200. http://dx.doi.org/10.1016/j.apcata.2008.06.031
|
[22]
|
Solymosi, F., Barthos, R. and Kecs-keméti, A. (2008) The Decomposition and Steam Reforming of Dimethyl Ether on Supported Mo2C Catalysts. Applied Catalysis A: General, 350, 30-37. http://dx.doi.org/10.1016/j.apcata.2008.07.037
|
[23]
|
Halasi, Gy., Bánsági, T. and Solymosi, F. (2009) Production of Hydrogen from Dimethyl Ether over Supported Rhodium Catalysts. ChemCatChem, 1, 311-317. http://dx.doi.org/10.1002/cctc.200900113
|
[24]
|
Faungnawakij, K., Shimoda, N., Fukunaga, T., Kikuchi, R. and Eguchi, K. (2009) Crystal Structure and Surface Species of CuFe2O4 Spinel Catalysts in Steam Reforming of Dimethyl Ether. Applied Catalysis B: Environmental, 92, 341-350. http://dx.doi.org/10.1016/j.apcatb.2009.08.013
|
[25]
|
Gazsi, A., Ugrai, I. and Solymosi, F. (2011) Production of Hydrogen from Dimethyl Ether on Supported Au Catalysts. Applied Catalysis A: General, 391, 360-366. http://dx.doi.org/10.1016/j.apcata.2010.04.054
|
[26]
|
Rouhi, A.M. (1995) Underwater Chemistry Creates Massive Sea-Floor Mineral Deposits. Chemical & Engineering News, 73, 37-39. http://dx.doi.org/10.1021/cen-v073n050.p037
|
[27]
|
Fleish, T.H., Basu, A., Gradassi, M.J. and Masin, J.G. (1997) Dimethyl Ether: A Fuel For The 21st Century. Studies in Surface Science and Catalysis, 107, 117-125. http://dx.doi.org/10.1016/S0167-2991(97)80323-0
|
[28]
|
Olah, G.A. and Molnár, á. (2003) Hydrocarbon Chemistry. Wiley, New York. http://dx.doi.org/10.1002/0471433489
|
[29]
|
Kecskeméti, A., Barthos, R. and Solymosi, F. (2008) Aromatization of Dimethyl Ether and Diethyl Ether on Mo2C-Promoted ZSM-5 Catalysts. Journal of Catalysis, 258, 111-120.
|
[30]
|
Wu, M.C., Tóth, G., Sápi, A., Leino, A.R., Kónya, Z., Kukovecz, á., Su, W.F. and Kordás, K. (2012) Synthesis and Photocatalytic Performance of Titanium Dioxide Nanofibers and the Fabrication of Flexible Composite Films from Nanofibers. Journal of Nanoscience and Nanotecnology, 12, 1421-1424. http://dx.doi.org/10.1166/jnn.2012.4655
|
[31]
|
Xu, J.H., Dai, W.L., Li, J., Cao, Y., Li, H., He, H. and Fan, K. (2008) Simple Fabrication of Thermally Stable Apertured N-doped TiO2 Microtubes as a Highly Efficient Photocatalyst under Visible Light Irradiation. Catalysis Communications, 9, 146-152. http://dx.doi.org/10.1016/j.catcom.2007.05.043
|
[32]
|
Schubert, G., Bánsági, T. and Solymosi, F. (2013) Photocatalytic Decomposition of Methyl Formate over TiO2-Supported Pt Metals. Journal of Physical Chemistry C, 117, 22797-22804. http://dx.doi.org/10.1021/jp406840n
|
[33]
|
Beebe Jr., T.P., Crowell, J.E. and Yates Jr., J.T. (1988) Reaction of Methyl Chloride with Alumina Surfaces: A Study of the Methoxy Surface Species by Transmission Infrared Spectroscopy. Journal of Physical Chemistry, 92, 1296-1301. http://dx.doi.org/10.1021/j100316a056
|
[34]
|
Chen, J.G., Basu, P., Ballinger, T.H. and Yates Jr., J.T. (1989) A Transmission Infrared Spectroscopic Investigation of the Reaction of Dimethyl Ether with Alumina Surfaces. Langmuir, 5, 352-356. http://dx.doi.org/10.1021/la00086a011
|
[35]
|
Busca, G., Elmi, A.S. and Forzatti, P. (1987) Mechanism of Selective Methanol Oxidation over Vanadium Oxide-Titanium Oxide Catalysts: A FT-IR and Flow Reactor Study. Journal of Physical Chemistry, 91, 5263-5269. http://dx.doi.org/10.1021/j100304a026
|
[36]
|
Solymosi, F. and Pásztor, M. (1986) Infrared Study of the Effect of H2 on CO-Induced Structural Changes in Supported Rh. Journal of Physical Chemistry, 90, 5312-5317. http://dx.doi.org/10.1021/j100412a081
|
[37]
|
Solymosi, F. and Klivényi, G. (1993) HREELS Study of CH3I and CH3 Adsorbed on Rh(111) Surface. Journal of Electron Spectroscopy and Related Phenomena, 64-65, 499-506. http://dx.doi.org/10.1016/0368-2048(93)80115-3
|
[38]
|
Jenner, G. (1995) Homogeneous Catalytic Reactions Involving Methyl Formate. Applied Catalysis A: General, 121, 25-44. http://dx.doi.org/10.1016/0926-860X(95)85008-2
|
[39]
|
Kominami, H., Sugahara, H. and Hashimoto, K. (2010) Photocatalytic Selective Oxidation of Methanol to Methyl Formate in Gas Phase over Titanium(Iv) Oxide in a Flow-Type Reactor. Catalysis Communications, 11, 426-429. http://dx.doi.org/10.1016/j.catcom.2009.11.014
|
[40]
|
Halasi, G., Schubert, G. and Solymosi, F. (2012) Comparative Study on the Photocatalytic Decomposition of Methanol on TiO2 Modified by N and Promoted by Metals. Journal of Catalysis, 294, 199-206. http://dx.doi.org/10.1016/j.jcat.2012.07.020
|
[41]
|
Phillips, K.R., Jensen, S.C., Baron, M., Li, S.C. and Friend, C.M. (2013) Sequential Photo-Oxidation of Methanol to Methyl Formate on TiO2(110). Journal of American Chemical Society, 135, 574-577. http://dx.doi.org/10.1021/ja3106797
|
[42]
|
Connelly, K., Wahab, A.K. and Idriss, H. (2012) Photoreaction of Au/TiO2 for Hydrogen Production from Renewables: A Review on the Synergistic Effect between Anatase and Rutile Phases of TiO2. Materials for Renewable and Sustainable Energy, 1, 3.
|
[43]
|
Szabó, Z.G. and Solymosi, F. (1961) Influence of the Defect Structure of Support on the Activity of Catalyst. Actes Du Deuxieme Congres International De Catalyse, Paris, July 1960, 1627-1651.
|
[44]
|
Solymosi, F. (1968) Importance of the Electric Properties of Supports in the Carrier Effect. Catalysis Reviews, 1, 233-255. http://dx.doi.org/10.1080/01614946808064705
|