[1]
|
Adomian, G. (1983) Stochastic Systems. Academic Press, New York.
|
[2]
|
Adomian, G. (1986) Nonlinear Stochastic Operator Equations. Academic Press, New York.
|
[3]
|
Adomian, G. (1989) Nonlinear Stochastic Systems Theory and Applications to Physics. Kluwer Academic Publishers, Dordrecht. http://dx.doi.org/10.1007/978-94-009-2569-4
|
[4]
|
Adomian, G. (1994) Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht. http://dx.doi.org/10.1007/978-94-015-8289-6
|
[5]
|
Chandrasekhar, S. (1961) Hydrodynamic Hydromagnetic Stability. Clarendon Press, Oxford. (Reprinted: Dover Books, New York, 1981)
|
[6]
|
Agarwal, R.P. (1986) Boundary Value Problems for Higher-Order Differential Equations. World Scientific, Singapore. http://dx.doi.org/10.1142/0266
|
[7]
|
Siddiqi, S.S. and Twizell, E.H. (1998) Spline Solutions of Linear Tenth-Order Boundary-Value Problems. International Journal of Computer Mathematics, 68, 345-362. http://dx.doi.org/10.1080/00207169808804701
|
[8]
|
Wazwaz, A.W. (2000) Approximate Solutions to Boundary Value Problems of Higher Order by the Modified Decomposition Method. Computers and Mathematics with Applications, 40, 679-691. http://dx.doi.org/10.1016/S0898-1221(00)00187-5
|
[9]
|
Erturk, V.S. and Momani, S. (2007) A Reliable Algorithm for Solving Tenth-Order Boundary Value Problems. Numerical Algorithms, 44, 147-158. http://dx.doi.org/10.1007/s11075-007-9093-3
|
[10]
|
Siddiqi, S.S. and Akram, G. (2007) Solutions of Tenth-Order Boundary Value Problems using Eleventh Degree Spline. Applied Mathematics and Computation, 185, 115-127. http://dx.doi.org/10.1016/j.amc.2006.07.013
|
[11]
|
Siddiqi, S.S. and Akram, G. (2007) Solution of 10th-Order Boundary Value Problems Using Non-Polynomial Spline Technique. Applied Mathematics and Computation, 190, 641-651. http://dx.doi.org/10.1016/j.amc.2007.01.075
|
[12]
|
Siddiqi, S.S., Akram, G. and Zaheer, S. (2009) Solution of Tenth Order Boundary Value Problems Using Variational Iteration Technique. European Journal of Scientific Research, 30, 326-347.
|
[13]
|
Ravi Kanth, A.S.V. and Aruna, K. (2009) He’s Homotopy Perturbation Method for Solving Higher-Order Boundary Value Problems. Chaos, Solitons and Fractals, 41, 1905-1909. http://dx.doi.org/10.1016/j.chaos.2008.07.044
|
[14]
|
Stakgold, I. (1998) Green’s Functions and Boundary Value Problems. John Wiley & Sons, Inc., Hoboken.
|
[15]
|
Abbaoui, K. and Cherruault, Y. (1994) Convergence of Adomian’s Method Applied to Differential Equations. Mathematical and Computer Modelling, 28, 103-109.
|
[16]
|
Abbaoui, K. and Cherruault, Y. (1995) New Ideas for Proving Convergence of Decomposition Methods. Computers and Mathematics with Applications, 29, 103-108. http://dx.doi.org/10.1016/0898-1221(95)00022-Q
|
[17]
|
Abbaoui, K. and Cherruault, Y. (1994) Convergence of Adomian’s Method Applied to Nonlinear Equations. Mathematical and Computer Modelling, 20, 69-73. http://dx.doi.org/10.1016/0895-7177(94)00163-4
|
[18]
|
Cherruault, Y. and Adomian, G. (1993) Decomposition Methods: A New Proof of Convergence. Mathematical and Computer Modelling, 18, 103-106. http://dx.doi.org/10.1016/0895-7177(93)90233-O
|
[19]
|
Guellal, S. and Cherruault, Y. (1994) Practical Formula for Calculation of Adomian’s Polynomials and Application to the Convergence of the Decomposition Method. International Journal Bio-Medical Computing, 36, 223-228. http://dx.doi.org/10.1016/0020-7101(94)90057-4
|
[20]
|
Wazwaz, A.W. (1999) A Reliable Modification of Adomian Decomposition Method. Applied Mathematics and Computation, 102, 77-86. http://dx.doi.org/10.1016/S0096-3003(98)10024-3
|