[1]
|
Phillips, J.L. (1973) Fatigue Improvement by Sleeve Cold Working. SAE Technical Paper 730905.
|
[2]
|
Yang, J.M., Her, Y.C., Han, N.L. and Clauer, A. (2001) Laser Shock Peening on Fatigue Behavior of 2024-T3 Al Alloy with Fastener Holes and Stopholes. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 298, 296-299. http://dx.doi.org/10.1016/S0921-5093(00)01277-6
|
[3]
|
Tan, Y., Wu, G., Yang, J.M. and Pan, T. (2004) Laser Shock Peening on Fatigue Crack Growth Behaviour of Aluminium Alloy. Fatigue & Fracture of Engineering Materials & Structures, 27, 649-656. http://dx.doi.org/10.1111/j.1460-2695.2004.00763.x
|
[4]
|
Ivetic, G., Meneghin, I., Troiani, E., Molinari, G., Ocana, J., Morales, M., Porro, J., Lanciotti, A., Ristori, V., Polese, C., Plaisier, J. and Lausi, A. (2012) Fatigue in Laser Shock Peened Open-Hole Thin Aluminium Specimens. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 542, 147-147. http://dx.doi.org/10.1016/j.msea.2012.02.037
|
[5]
|
Cuellar, S.D., Hill, M.R., DeWald, A.T. and Rankin, J.E. (2012) Residual Stress and Fatigue Life in Laser Shock Peened Open Hole Samples. International Journal of Fatigue, 44, 8-13. http://dx.doi.org/10.1016/j.ijfatigue.2012.06.011
|
[6]
|
Brennen, C.E. (1995) Cavitation and Bubble Dynamics. Oxford University Press, Oxford.
|
[7]
|
Soyama, H., Kusaka, T. and Saka, M. (2001) Peening by the Use of Cavitation Impacts for the Improvement of Fatigue Strength. Journal of Materials Science Letters, 20, 1263-1265. http://dx.doi.org/10.1023/A:1010947528358
|
[8]
|
Soyama, H., Saito, K. and Saka, M. (2002) Improvement of Fatigue Strength of Aluminum Alloy by Cavitation Shotless Peening. Journal of Engineering Materials and Technology, 124, 135-139. http://dx.doi.org/10.1115/1.1447926
|
[9]
|
Odhiambo, D. and Soyama, H. (2003) Cavitation Shotless Peening for Improvement of Fatigue Strength of Carbonized Steel. International Journal of Fatigue, 25, 1217-1222. http://dx.doi.org/10.1016/S0142-1123(03)00121-X
|
[10]
|
Soyama, H., Yamauchi, Y., Adachi, Y., Sato, K., Shindo, T. and Oba, R. (1995) High-Speed Observations of the Cavitation Cloud around a High-Speed Submerged Water-Jet. JSME International Journal Series B-Fluids and Thermal Engineering, 38, 245-251. http://dx.doi.org/10.1299/jsmeb.38.245
|
[11]
|
Soyama, H., Yamauchi, Y., Sato, K., Ikohagi, T., Oba, R. and Oshima, R. (1996) High-Speed Observation of Ultrahigh-Speed Submerged Water Jets. Experimental Thermal and Fluid Science, 12, 411-416. http://dx.doi.org/10.1016/0894-1777(95)00124-7
|
[12]
|
Soyama, H., Shimizu, M., Hattori, Y. and Nagasawa, Y. (2008) Improving the Fatigue Strength of the Elements of a Steel Belt for CVT by Cavitation Shotless Peening. Journal of Materials Science, 43, 5028-5030. http://dx.doi.org/10.1007/s10853-008-2743-6
|
[13]
|
Soyama, H., Macodiyo, D.O. and Mall, S. (2004) Compressive Residual Stress into Titanium Alloy Using Cavitation Shotless Peening Method. Tribology Letters, 17, 501-504. http://dx.doi.org/10.1023/B:TRIL.0000044497.45014.f2
|
[14]
|
Lee, H., Mall, S. and Soyama, H. (2009) Fretting Fatigue Behavior of Cavitation Shotless Peened Ti-6Al-4V. Tribology Letters, 36, 89-94. http://dx.doi.org/10.1007/s11249-009-9463-1
|
[15]
|
Soyama, H., Nagasaka, K., Takakuwa, O. and Naito, A. (2012) Optimum Injection Pressure of a Cavitating Jet for Introducing Compressive Residual Stress into Stainless Steel. Journal of Power and Energy Systems, 6, 63-75. http://dx.doi.org/10.1299/jpes.6.63
|
[16]
|
Daniewicz, S.R. and Cummings, S.D. (1999) Characterization of a Water Peening Process. Journal of Engineering Materials and Technology-Transactions of the ASME, 121, 336-340. http://dx.doi.org/10.1115/1.2812383
|
[17]
|
Chillman, A., Ramulu, M. and Hashish, M. (2007) Waterjet Peening and Surface Preparation at 600 MPa: A Preliminary Experimental Study. Journal of Fluids Engineering-Transactions of the ASME, 129, 485-490. http://dx.doi.org/10.1115/1.2436580
|
[18]
|
Soyama, H. (2014) Enhancing the Aggressive Intensity of a Cavitating Jet by Introducing a Cavitator and a Guide Pipe. Journal of Fluid Science and Technology, 9, 1-12. http://dx.doi.org/10.1299/jfst.2014jfst0001
|
[19]
|
Soyama, H. (2011) Corrosion Behavior of Pressure Vessel Steel Exposed to Residual Bubbles after Cavitation Bubble Collapse. Corrosion, 67, 025001-1-025001-8. http://dx.doi.org/10.5006/1.3548733
|
[20]
|
Soyama, H. (2007) Improvement of Fatigue Strength by Using Cavitating Jets in Air and Water. Journal of Materials Science, 42, 6638-6641. http://dx.doi.org/10.1007/s10853-007-1535-8
|
[21]
|
Takakuwa, O. and Soyama, H. (2012) Suppression of Hydrogen-Assisted Fatigue Crack Growth in Austenitic Stainless Steel by Cavitation Peening. International Journal of Hydrogen Energy, 37, 5268-5276. http://dx.doi.org/10.1016/j.ijhydene.2011.12.035
|
[22]
|
Takakuwa, O. and Soyama, H. (2013) Optimizing the Conditions for Residual Stress Measurement Using a Two-Di- mensional XRD Method with Specimen Oscillation. Advances in Materials Physics and Chemistry, 3, 8-18. http://dx.doi.org/10.4236/ampc.2013.31A002
|
[23]
|
Soyama, H., Park, J.D. and Saka, M. (2000) Use of Cavitating Jet for Introducing Compressive Residual Stress. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 122, 83-89. http://dx.doi.org/10.1115/1.538911
|
[24]
|
Little, R.E. (1972) Estimating the Median Fatigue Limit for Very Small Up-and-Down QuantalResponse Tests and for S-N Data with Runouts. ASTM STP, 511, 29-42.
|