[1]
|
Ott, E., Grebogi, C. and Yorke, J.A. (1990) Controlling Chaos. Physical Review Letters, 64, 1196-1199. http://dx.doi.org/10.1103/PhysRevLett.64.1196
|
[2]
|
Chen, G. and Dong, X. (1998) From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore.
|
[3]
|
Wang, G.R., Yu, X.L. and Chen, S.G. (2001) Chaotic Control, Synchronization and Utilizing. National Defence Industry Press, Beijing.
|
[4]
|
Guan, X.P., Fan, Z.P., Chen, C.L. and Hua, C.C. (2002) Chaotic Control and Its Application on Secure Communication. National Defence Industry Press, Beijing.
|
[5]
|
Chen, G.R. and Lü, J.H. (2003) Dynamical Analyses, Control and Synchronization of the Lorenz System Family. Science Press, Beijing.
|
[6]
|
Wang, X.Y. (2003) Chaos in the Complex Nonlinearity System. Electronics Industry Press, Beijing.
|
[7]
|
Roopaei, M., Sahraei, B.R. and Lin, T.C. (2010) Adaptive Sliding Mode Control in a Novel Class of Chaotic Systems. Communications in Nonlinear Science and Numerical Simulation, 15, 4158-4170. http://dx.doi.org/10.1016/j.cnsns.2010.02.017
|
[8]
|
Zhang, L.P. and Jiang, H.B. (2011) Impulsive Generalized Synchronization for a Class of Nonlinear Discrete Chaotic Systems. Communications in Nonlinear Science and Numerical Simulation, 16, 2027-2032. http://dx.doi.org/10.1016/j.cnsns.2010.07.022
|
[9]
|
Sorrentino, F. and DeLellis, P. (2012) Estimation of Communication-Delays through Adaptive Synchronization of Chaos. Chaos, Solitons & Fractals, 45, 35-46. http://dx.doi.org/10.1016/j.chaos.2011.09.004
|
[10]
|
Shi, X.R. and Wang, Z.L. (2009) Adaptive Added-Order Anti-Synchronization of Chaotic Systems with Fully Unknown Parameters. Applied Mathematics and Computation, 215, 1711-1717. http://dx.doi.org/10.1016/j.amc.2009.07.023
|
[11]
|
Chen, Y., Li, M.Y. and Cheng, Z.F. (2010) Global Anti-Synchronization of Master-Slave Chaotic Modified Chua’s Circuits Coupled by Linear Feedback Control. Mathematical and Computer Modelling, 52, 567-573. http://dx.doi.org/10.1016/j.mcm.2010.03.056
|
[12]
|
Yang, X.S., Zhu, Q.X. and Huang, C.X. (2011) Generalized Lag-Synchronization of Chaotic Mix-Delayed Systems with Uncertain Parameters and Unknown Perturbations. Nonlinear Analysis: Real World Applications, 12, 93-105. http://dx.doi.org/10.1016/j.nonrwa.2010.05.037
|
[13]
|
Wang, Q.Y., Lu, Q.S. and Duan, Z.S. (2010) Adaptive Lag Synchronization in Coupled Chaotic Systems with Unidirectional Delay Feedback. International Journal of Nonlinear Mechanics, 45, 640-646. http://dx.doi.org/10.1016/j.ijnonlinmec.2009.01.001
|
[14]
|
An, X.L., Yu, J.N. and Li, Y.Z. (2011) Design of a New Multistage Chaos Synchronized System for Secure Communications and Study on Noise Perturbation. Mathematical and Computer Modelling, 54, 7-18. http://dx.doi.org/10.1016/j.mcm.2011.01.020
|
[15]
|
Lü, J., Chen, G., Cheng, D. and Celikovsky, S. (2002) Bridge the Gap between the Lorenz System and the Chen System. International Journal of Bifurcation and Chaos, 12, 2917-2926. http://dx.doi.org/10.1142/S021812740200631X
|
[16]
|
Lorenz, E.N. (1963) Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141. http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
[17]
|
Chen, G. and Ueta, T. (1999) Yet Another Chaotic Attractor. International Journal of Bifurcation and Chaos, 9, 1465-1466. http://dx.doi.org/10.1142/S0218127499001024
|
[18]
|
Lü, J. and Chen, G. (2002) A New Chaotic Attractor Coined. International Journal of Bifurcation and Chaos, 12, 659-661. http://dx.doi.org/10.1142/S0218127402004620
|
[19]
|
Celikovsky, S. and Chen, G. (2002) On a Generalized Lorenz Canonical Form of Chaotic Systems. International Journal of Bifurcation and Chaos, 12, 1789-1812.
|
[20]
|
Pyragas, K. (1992) Continuous Control of Chaos by Self-Controlling Feedback. Physics Letters A, 170, 421-428. http://dx.doi.org/10.1016/0375-9601(92)90745-8
|
[21]
|
Pyragas, K. and Tamasiavicius, A. (1993) Experimental Control of Chaos by Delayed Self-Controlling Feedback. Physics Letters A, 180, 99-102. http://dx.doi.org/10.1016/0375-9601(93)90501-P
|
[22]
|
Hikihara, T. and Kawagoshi, T. (1996) An Experimental Study on Stabilization of Unstable Periodic Motion in Magneto-Elastic Chaos. Physics Letters A, 211, 29-36. http://dx.doi.org/10.1016/0375-9601(95)00925-6
|
[23]
|
Bielawski, S., Derozier, D. and Glorieux, P. (1994) Controlling Unstable Periodic Orbits by a Delayed Continuous Feedback. Physical Review E, 49, 971-974. http://dx.doi.org/10.1103/PhysRevE.49.R971
|
[24]
|
Lü, J. and Chen, G. (2006) Generating Multiscroll Chaotic Attractors: Theoreis, Methods and Applications. International Journal of Bifurcation and Chaos, 16, 775-858. http://dx.doi.org/10.1142/S0218127406015179
|
[25]
|
Lü, J., Han, F., Yu, X. and Chen, G. (2004) Generating 3-D Multi-Scroll Chaotic Attractors: A Hysteresis Series Switching Method. Automatica, 40, 1677-1687. http://dx.doi.org/10.1016/j.automatica.2004.06.001
|