Visible Light Induced Knoevenagel Condensation Catalyzed by Starfruit Juice of Averrhoa carambola


Aqueous starfruit juice catalyzed a simple and efficient Knoevenagel condensation of aromatic aldehydes with malononitrile has been developed under visible light. Products were obtained in yields up to 98% after short reaction times and they were isolated by simple filtration in pure crystallization states. The method is green and economically viable. A plausible mechanism for photochemical Knoevenagel condensation reaction catalyzed by starfruit juice was also predicted.

Share and Cite:

Pal, R. and Sarkar, T. (2014) Visible Light Induced Knoevenagel Condensation Catalyzed by Starfruit Juice of Averrhoa carambola. International Journal of Organic Chemistry, 4, 106-115. doi: 10.4236/ijoc.2014.42012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Knoevenagel, E. (1894) Uebereine Darstellungsweise der Glutarsaure. Berichte der Deutschen Chemischen Gesellschaft, 2, 2345-2346.
[2] Knoevenagel, E. (1898) Condensationen zwisschen malonester und aldehyden unter dem einfluss von ammoniak und organischen aminen. Chemische Berichte, 31, 2585-2595.
[3] Jones, G. (1967) The Knoevenagel Condensation. Organic Reactions, 15, 204-599.
[4] Tietze, L.F. and Beifuss, U. (1991) The Knoevenagel Reaction. In: Trost, B.M., Ed., Comprehensive Organic Synthesis, Pergamon Press, Oxford, 341-394.
[5] Yu, N., Aramini, J.M., Germann, M.W. and Huang, Z. (2000) Reactions of Salicylaldehydes with Alkyl Cyanoacetates on the Surface of Solid Catalysts: Synthesis of 4H-Chromene Derivatives. Tetrahedron Letters, 41, 6993-6996.
[6] Gallos, J., Discordia, R.P., Crispino, G.A., Li, J., Grosso, J.A., Polniaszek, V. and True, V.C. (2003) A Mild and Efficient Synthesis of 4-Aryl-Quinolin-2(1H)-Ones via a Tandem Amidation/Knoevenagel Condensation of 2-Amino-Benzophenones with Esters or Lactones. Tetrahedron Letters, 44, 4271-4273.
[7] Xing, C. and Zhu, S. (2004) Unexpected Formation of Tetrasubstituted 2,3-Dihydrofurans from the Reactions of β-Keto Polyfluoroalkanesulfones with Aldehydes. Journal of Organic Chemistry, 69, 6486-6488.
[8] Tietze, L.F. and Rackelmann, N. (2004) Domino Reactions in the Synthesis of Heterocyclic Natural Products and Analogs. Pure and Applied Chemistry, 76, 1967-1983.
[9] Vijender, M., Kishor, P. and Satyanarayana, B. (2008) Zirconium Tetrachloride-SiO2 Catalyzed Knoevenagel Condensation: A Simple and Efficient Protocol for the Synthesis of Substituted Electrophilic Alkenes. Arkivoc, 2008, 122-128.
[10] Rao, P.S. and Venkataratnam, R.V. (1991) Zinc Chloride as a New Catalyst for Knoevenagel Condensation. Tetrahedron Letters, 32, 5821-5822.
[11] Prajapati, D. and Sandhu, J.S. (1993) Cadmium Iodide as a New Catalyst for Knoevenagel Condensation. Journal of the Chemical Society, Perkin Transactions 1, 1, 739-740.
[12] Lehnert, W. (1970) Verbesserte Variante der Knoevenagel-Kondensation Mit TiCl4/THF/Pyridine (I). Alkyliden-und Arylidenmalonester bei 0 - 25°C. Tetrahedron Letters, 11, 4723-4724.
[13] Dai, G., Shi, D., Zhou, L. and Huaxue, Y. (1995) Knoevenagel Condensation Catalysed by Potassium Fluoride/Alumina. Chinese Journal of Applied Chemistry, 12, 104-108.
[14] Gill, C., Pandhare, G., Raut, R., Gore, V. and Gholap, S. (2008) Knoevenagel Condensation: A Simple and Efficient Protocol of Electrophilic Alkenes Catalyzed by Anhydrous Ferric Sulphate with Remarkable Reusability. Bulletin of the Catalysis Society of India, 7, 153-157.
[15] Bogdal, D. (1998) Coumarins: Fast Synthesis by Knoevenagel Condensation under Microwave Irradiation. Journal of Chemical Research (Synopsis), 8, 468-469.
[16] Kumar, H.M.S., Reddy, B.V.S., Anjaneyulu, S. and Yadav, J.S. (1998) Non Solvent Reaction: Ammonium Acetate Catalyzed Highly Convenient Preparation of Trans-Cinnamic Acid. Synthetic Communications, 28, 3811-3815.
[17] Kumar, H.M.S., Reddy, B.V.S., Reddy, P.T., Srinivas, D. and Yadav, J.S. (2000) Silica Gel Catalyzed Preparation of Cinnamic Acid under Microwave Irradiation. Organic Preparations Procedures International, 32, 81-83.
[18] Mogilaiah, K. and Reddy, C.S. (2003) An Efficient Friedlander Condensation Using Sodium Fluoride as Catalyst in the Solid State. Synthetic Communications, 33, 3131-3134.
[19] Mallouk, S., Bougrin, K., Laghzizil, A. and Benhida, R. (2010) Microwave-Assisted and Efficient Solvent-Free Knoevenagel Condensation. A Sustainable Protocol Using Calcium Hydroxyapatite as Catalyst. Molecules, 15, 813-823.
[20] Bhuiyan, M.M.H., Hossain, M.I., Alam, M.A. and Mahmud, M.M. (2012) Microwave Assisted Knoevenagel Condensation: Synthesis and Antimicrobial Activities of Some Arylidene-Malononitriles. Chemistry Journal, 2, 30-36.
[21] McNulty, J., Steere, J.A. and Wolf, S. (1998) The Ultrasound Promoted Knoevenagel Condensation of Aromatic Aldehydes. Tetrahedron Letters, 39, 8013-8016.
[22] Palmisano, G., Tibiletti, F., Penoni, A., Colombo, F., Tollari, S., Garella, D., Tagliapietra, S. and Cravotto, G. (2011) Ultrasound-Enhanced One-Pot Synthesis of 3-(Het)arylmethyl-4-hydroxycoumarins in Water. Ultrasonics Sonochemistry, 18, 652-660.
[23] Pratap, U.R., Jawale, D.V., Waghmare, R.A., Lingampalle, D.L. and Mane, R.A. (2011) Synthesis of 5-arylidene-2, 4-thiazolidinediones by Knoevenagel Condensation Catalyzed by Baker’s Yeast. New Journal of Chemistry, 35, 49-51.
[24] Wang, C.H., Guan, Z. and He, Y.H. (2011) Biocatalytic Domino Reaction: Synthesis of 2H-1-benzopyran-2-one Derivatives Using Alkaline Protease from Bacillus licheniformis. Green Chemistry, 13, 2048-2054.
[25] Xia, Y., Yang, Z.Y., Brossi, A. and Lee, K.H. (1999) Asymmetric ‘Solid-Phase Synthesis of (3‘R,4‘R)-Di-O-cis-acyl 3-Carboxyl Khellactones. Organic Letters, 1, 2113-2115.
[26] Guo, G., Arvanitis, E.A., Pottorf, R.S. and Player, M.P. (2003) Solid-Phase Synthesis of a Tyrphostin Ether Library. Journal of Combinatorial Chemistry, 5, 408-413.
[27] Ying, A.G., Liu, L., Wu, G.F., Chen, X.Z., Ye, W.D., Chen, J.H. and Zhang, K.Y. (2009) Knoevenagel Condensation Catalyzed by DBU Brönsted Ionic Liquid without Solvent. Chemical Research in Chinese Universities, 25, 876-881.
[28] Khan, F.A., Dash, F.J., Satapathy, R. and Upadhyay, S.K. (2004) Hydrotalcite Catalysis in Ionic Medium: A Recyclable Reaction System for Heterogeneous Knoevenagel and Nitroaldol Condensation. Tetrahedron Letters, 45, 3055-3058.
[29] Verdia, P., Santamarta, F. and Tojo, E. (2011) Knoevenagel Reaction in [MMIm][MSO4]: Synthesis of Coumarins. Molecules, 16, 4379-4388.
[30] Hu, Y., Chen, J., Le, Z.G. and Zheng, Q.G. (2005) Organic Reactions in Ionic Liquids: Ionic Liquids Ethylammonium Nitrate Promoted Knoevenagel Condensation of Aromatic Aldehydes with Active Methylene Compounds. Synthetic Communications, 35, 739-744.
[31] Xin, X., Guo, X., Duan, H., Lin, Y. and Sun, H. (2007) Efficient Knoevenagel Condensation Catalyzed by Cyclic Guanidinium Lactate Ionic Liquid as Medium. Catalysis Communications, 8, 115-117.
[32] Santamarta, F., Verdía, P. and Tojo, E. (2008) A Simple, Efficient and Green Procedure for Knoevenagel Reaction in [MMIm][MSO4] Ionic Liquid. Catalysis Communications, 9, 1779-1781.
[33] Yue, C., Mao, A., Wei, Y. and Lü, M. (2008) Knoevenagel Condensation Reaction Catalyzed by Task-Specific Ionic Liquid under Solvent-Free Conditions. Catalysis Communications, 9, 1571-1574.
[34] Bigi, F., Conforti, M.L., Maggi, R., Piccinno, A. and Sartori, G. (2000) Clean Synthesis in Water: Uncatalysed Preparation of Ylidenemalonitriles. Green Chemistry, 2, 101-103.
[35] Wang, S., Ren, Z., Cao, W. and Tong, W. (2001) The Knoevenagel Condensation of Aromatic Aldehydes with Malo-nonitrile or Ethyl Cyanoacetate in the Presence of CTMAB in Water. Synthetic Communications, 31, 673-677.
[36] Oskooie, H.A., Heravi, M.M., Derikvand, F., Khorasani, M. and Bamoharram, F.F. (2006) On Water: An Efficient Knoevenagel Condensation Using 12-Tungstophoric Acid as a Reusable Green Catalyst. Synthetic Communications, 36, 2819-2823.
[37] Pasha, M.A. and Manjula, K. (2011) Lithium Hydroxide: A Simple and an Efficient Catalyst for Knoevenagel Condensation under Solvent-Free Grindstone Method. Journal of Saudi Chemical Society, 15, 283-286.
[38] Rong, L., Li, X., Wang, H., Shi, D., Tu, S. and Zhuang, Q. (2006) Efficient Green Procedure for the Knoevenagel Condensation under Solvent-Free Conditions. Synthetic Communications, 36, 2407-2412.
[39] Ren, Z., Cao, W. and Tong, W. (2002) The Knoevenagel Condensation Reaction of Aromatic Aldehydes with Malononitrile by Grinding in the Absence of Solvents and Catalysts. Synthetic Communications, 32, 3475-3479.
[40] Okkerse, C. and van Bekkun, H. (1999) From Fossil to Green. Green Chemistry, 1, 107-114.
[41] Anastas, P.T. and Warner, J.C. (2000) Green Chemistry: Theory and Practice. Oxford University Press, New York.
[42] Hoffmann, N. (2008) Photochemical Reactions as Key Steps in Organic Synthesis. Chemical Reviews, 108, 1052-1103.
[43] Fagnoni, M., Dondi, D., Ravelli, D. and Albini, A. (2007) Photocatalysis for the Formation of the C-C Bond. Chemical Reviews, 107, 2725-2756.
[44] Ghosh, S. and Das, J. (2011) A Novel Photochemical Wittig Reaction for the Synthesis of 2-Aryl/Alkylbenzofurans. Tetrahedron Letters, 52, 1112-1116.
[45] Ghosh, S., Das, J. and Chattopadhyay, S. (2011) A Novel Light Induced Knoevenagel Condensation of Meldrum’s Acid with Aromatic Aldehydes in Aqueous Ethanol. Tetrahedron Letters, 52, 2869-2872.
[46] Ghosh, S., Das, J. and Saikh, F. (2012) A New Synthesis of 2-Aryl/Alkylbenzofurans by Visible Light Stimulated Intermolecular Sonogashira Coupling and Cyclization Reaction in Water. Tetrahedron Letters, 53, 5883-5886.
[47] Ghosh, S., Saikh, F., Das, J. and Pramanik, A.K. (2013) Hantzsch 1,4-Dihydropyridine Synthesis in Aqueous Ethanol by Visible Light. Tetrahedron Letters, 54, 58-62.
[48] Li, C. and Chen, L. (2006) Organic Chemistry in Water. Chemical Society Reviews, 35, 68-82.
[49] Breslow, R. (1991) Hydrophobic Effects on Simple Organic Reactions in Water. Accounts of Chemical Research, 24, 159-164.
[50] Ramesh, E. and Raghunathan, R. (2009) Microwave-Assisted K-10 Montmorillonite Clay-Mediated Knoevenagel Hetero-Diels-Alder Reactions: A Novel Protocol for the Synthesis of Polycyclic Pyrano[2,3,4-kl]xanthenes Derivatives. Synthetic Communications, 39, 613-625.
[51] Habibi, D. and Marvi, O. (2006) Montmorillonite KSF and Montmorillonite K-10 Clays as Efficient Catalysts for the Solventless Synthesis of Bismaleimides and Bisphthalimides Using Microwave Irradiation. Arkivoc: Online Journal of Organic Chemistry, 2006, 8-15.
[52] Chakrabarty, M., Mukherjee, A., Arima, S., Harigaya, Y. and Pilet, G. (2009) Expeditious Reaction of Ninhydrin with Active Methylene Compounds on Montmorillonite K10 Clay. Monatshefte Für Chemie—Chemical Monthly, 140, 189-197.
[53] Wada, S. and Suzuki, H. (2003) Calcite and Fluorite as Catalyst for the Knoevenagel Condensation of Malononitrile and Methyl Cyanoacetate under Solvent-Free Conditions. Tetrahedron Letters, 44, 399-401.
[54] Zahouily, M., Mounir, B., Charki, H., Mezdar, A., Bahlaouan, B. and Ouammou, M. (2006) Investigation of the Basis Catalytic Activity of Natural Phosphates in the Michael Condensation. Arkivoc: Online Journal of Organic Chemistry, 2006, 178-186.
[55] Zahouily, M., Bahlaouan, B., Rayadh, A. and Sebti, S. (2004) Natural Phosphates and Potassium Fluoride Doped Natural Phosphate: Efficient Catalyst for the Construction of a Carbon-Nitrogen Bond. Tetrahedron Letters, 45, 4135-4138.
[56] Sebti, S., Smahi, A. and Solly, A. (2002) Natural Phosphate Doped with Potasiuum Fluoride and Modified with Sodium Nitrate: Efficient Catalysts for the Knoevenagel Condensation. Tetrahedron Letters, 43, 1813-1815.
[57] Riadi, Y., Mamouni, R., Azzalou, R., Boulahjar, R., Abrouki, Y., El Haddad, M., Routier, S., Guillaumet, G. and Lazar, S. (2010) Animal Bone Meal as an Efficient Catalyst for Crossed-Aldol Condensation. Tetrahedron Letters, 51, 6715-6717.
[58] Deshmukh, M.B., Patil, S.S., Jadhav, S.D. and Pawar, P.B. (2012) Green Approach for Knoevenagel Condensation of Aromatic Aldehydes with Active Methylene Group. Synthetic Communications, 42, 1177-1183.
[59] Patil, S., Jadhav, S.D. and Deshmuk, M.B. (2011) Natural Acid Catalyzed Multi-Component Reaction as a Green Approach. Archives of Applied Science Research, 3, 203-208.
[60] Sachdeva, H., Saroj, R., Khaturia, S. and Dwivedi, D. (2013) Environ-Economic Synthesis and Characterization of Some New 1,2,4-Triazole Derivative as Organic Fluorescent Materials and Potent Fungicidal Agents. Organic Chemistry International, 2013, Article ID 659107.
[61] Patil, S., Jhadav, S.D. and Patil, U.P. (2012) Natural Acid Catalyzed Synthesis of Schiff Base under Solvent-Free Condition: As a Green Approach. Archives of Applied Science Research, 4, 1074-1078.
[62] Pal, R., Khasnobis, S. and Sarkar, T. (2013) First Application of Fruit Juice of Citrus limon for Facile and Green Synthesis of Bis- and Tris(indolyl)methanes in Water. Chemistry Journal, 3, 7-12.
[63] Pal, R. (2013) Microwave-Assisted Eco-Friendly Synthesis of Bis-, Tris(indolyl)methanes and Synthesis of Dibis(indolyl)methanes Catalyzed by Fruit Juice of Citrus limon under Solvent-Free Conditions. IOSR Journal of Applied Chemistry, 3, 1-8.
[64] Pal, R. (2013) New Greener Alternative for Biocondensation of Aldehydes and Indoles Using Lemon Juice: Formation of Bis-, Tris-, and Tetraindoles. International Journal of Organic Chemistry, 3, 136-142.
[65] Patil, S., Jadhav, S.D. and Mane, S. (2011) Pineapple Juice as a Natural Catalyst: An Excellent Catalyst for Biginelli Reaction. Journal of Organic Chemistry, 1, 125-131.
[66] Patil, S., Jadhav, S.D. and Deshmukh, M.B. (2013) Eco-Friendly and Economic Method for Knoevenagel Condensation by Employing Natural Catalyst. Indian Journal of Chemistry, 52B, 1172-1175.
[67] Fonseca, A.M., Monte, F.J., de Oliveira, M.C.F., de Mattos, M.C.M., Cordell, G.A., Braz-Filho, R. and Lemos, T.L.G. (2009) Coconut Water (Cocos nucifera L.)—A New Biocatalyst System for Organic Synthesis. Journal of Molecular Catalysis B: Enzymatic, 57, 78-82.
[68] Mote, K., Pore, S., Rashinkar, G., Kambale, S., Kumbhar, A. and Salunkhe, R. (2010) Acacia Concinna Pods: As a Green Catalyst for Highly Efficient Synthesis of Acylation of Amines. Archives of Applied Science Research, 2, 74-80.
[69] Pore, S., Rashimkar, G., Mote, K. and Salunkhe, R. (2010) Aqueous Extract of the Pericarp of Sapindus trifoliatus Fruits: A Novel ‘Green’ Catalyst for the Aldimine Synthesis. Chemistry and Biodiversity, 7, 1796-1800.
[70] Pal, R. (2013) A Convenient, Rapid and Eco-Friendly Synthesis of Bis-, Tris(indolyl)methanes and Synthesis of Tetraindolyl Compounds Catalyzed by Tamarind Juice under Microwave Irradiation. International Journal of Chemtech Applications, 2, 26-40.
[71] Pal, R. (2014) Visible Light Induced Knoevenagel Condensation: A Clean and Efficient Protocol Using Aqueous Fruit Extract of Tamarindus indica as Catalyst. International Journal of Advanced Chemistry, 2, 27-33.
[72] Sripanidkulchai, B., Tattawasart, U., Laupattarakasem, P. and Wongpanich, V. (2002) Anti-Inflammatory and Bactericidal Properties of Selected Indigeneous Medicinal Plants Used for Dysuria. Thai Journal of Pharmaceutical Sciences, 26, 33-38.
[73] Morton, J.F. (1987) Carambola. In: Dowling, C.F., Ed., Fruits of Warm Climates, Flair Books, Miami, 125-128.
[74] Dasgupta, P., Chakraborty, P. and Bala, N.N. (2013) Averrhoa carambola: An Updated Review. International Journal of Pharma Research & Review, 2, 54-63.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.