Application of Operational Approaches to Solving Decision Making Problem Using Z-Numbers

The combination of fuzzy logic tools and multi-criteria decision making has a great relevance in literature. Compared with the classical fuzzy number, Z-number has more ability to describe the human knowledge. It can describe both restraint and reliability. Prof. L. Zadeh introduced the concept of Z-numbers to describe the uncertain information which is a more generalized notion closely related to reliability. Use of Z-information is more adequate and intuitively meaningful for formalizing information of a decision making problem. In this paper, Z-number is applied to solve multi-criteria decision making problem. In this paper, we consider two approaches to decision making with Z-information. The first approach is based on converting the Z-numbers to crisp number to determine the priority weight of each alternative. The second approach is based on Expected utility theory by using Z-numbers. To illustrate a validity of suggested approaches to decision making with Z-information the numerical examples have been used.

Share and Cite:

Gardashova, L. (2014) Application of Operational Approaches to Solving Decision Making Problem Using Z-Numbers. Applied Mathematics, 5, 1323-1334. doi: 10.4236/am.2014.59125.

Conflicts of Interest

The authors declare no conflicts of interest.

 [1] Herrera, F., Herrera-Viedma, E. and Verdegay, J.L. (1997) A Rational Consensus Model in Group Decision Making Using Linguistic Assessments. Fuzzy Sets and Systems, 88, 31-49. http://dx.doi.org/10.1016/S0165-0114(96)00047-4 [2] Adamopoulos, G.I. and Pappis, C.P. (1996) A Fuzzy Linguistic Approach to a Multi Criteria Sequencing Problem. European Journal of Operational Research, 92, 628-636. http://dx.doi.org/10.1016/0377-2217(95)00091-7 [3] Wang, R.C. and Chuu, S.J. (2004) Group Decision Making Using a Fuzzy Linguistic Approach for Evaluating the Flexibility in a Manufacturing System. European Journal of Operational Research, 154, 563-572. http://dx.doi.org/10.1016/S0377-2217(02)00729-4 [4] Herrera-Viedma, E., Herrera, F., Chiclana, F. and Luque, M. (2004) Some Issues on Consistency of Fuzzy Preference Relations. European Journal of Operational Research, 154, 98-109. http://dx.doi.org/10.1016/S0377-2217(02)00725-7 [5] Wu, D.R. and Mendel, J.M. (2011) Linguistic summarization using if then rules and interval Type-2 Fuzzy sets. IEEE Transactions on Fuzzy Systems, 19, 136-151. http://dx.doi.org/10.1109/TFUZZ.2010.2088128 [6] Kasprzyk, J. and Yager, R. (2001) Linguistic Summaries of Data Using Fuzzy Logic. International Journal of General Systems, 30, 133-154. http://dx.doi.org/10.1080/03081070108960702 [7] Kacprzyk, J., Yager, R. and Zadrozny, S. (2000) A Fuzzy Logic Based Approach to Linguistic Summaries of Databases. Journal of Applied Mathematics and Computer Science, 10, 813-834. [8] Mendel, J.M. and Wu, D. (2008) A Type-2 Fuzzy Approach to Linguistic Summarization of Data. IEEE Transactions on Fuzzy Systems, 16, 198-212. http://dx.doi.org/10.1109/TFUZZ.2007.902025 [9] Aliev, R.A. and Aliev, R.R. (2001) Soft Computing and Its Application. World Scientific. http://dx.doi.org/10.1142/4766 [10] Yager, R.R. (2008) Human Behavioral Modeling Using Fuzzy and Dempster-Shafer Theory. Social Computing, Behavioral Modeling, and Prediction, 89-99. www.springerlink.com/index/j3127j07280871v5.pdf [11] Pedrycz, W. and Gomide, F. (2007) Fuzzy Systems Engineering: Toward Human-Centric Computing. John Wiley & Sons, New York. http://dx.doi.org/10.1002/9780470168967 [12] Mendel, J.M. and Wu, D. (2008) Perceptual Reasoning for Perceptual Computing. Transactions on Fuzzy Systems, 16, 1550-1564. [13] Wu, D.R. and Mendel, J.M. (2008) Perceptual Reasoning Using Interval Type-2 Fuzzy Sets: Properties. Proceedings of the IEEE International Conference on Fuzzy Systems, China, 1-6 June 2008, 1219-1226. [14] Zadeh, L.A. (2011) A Note on a Z-Number. Journal of Information Sciences, 181, 2923-2932. http://dx.doi.org/10.1016/j.ins.2011.02.022 [15] Yager, R.R. (2012) On Z-Valuations Using Zadeh’s Z-Numbers. International Journal of Intelligent Systems, 27, 259278. http://dx.doi.org/10.1002/int.21521 [16] Neiwiadomski, A. (2008) A Type-2 Fuzzy Approach to Linguistic Summarization of Data. IEEE Transactions on Fuzzy System, 16, 198-211. [17] Zhang, J.S., Weerakkody, L. and Roelant, D. (2007) A Dempster-Shafer Theory Based Algorithm for Classification of Imperfect Data. Proceedings of IADIS European Conference on Data Mining, Lisbon, 11-16. [18] Kang, B.Y., Wei, D.J., Li, Y. and Deng, Y. (2012) A Method of Converting Z-Number to Classical Fuzzy Number. Journal of Information & Computational Science, 9, 703-709. [19] Kang, B.Y., Wei, D.J., Li, Y. and Deng, Y. (2012) Decision Making Using Z-Numbers under Uncertain Environment. Journal of Information & Computational Science, 8, 2807-2814. [20] Chou, Ch.Ch. (2003) The Canonical Representation of Multiplication Operation on Triangular Fuzzy Numbers. Computers & Mathematics with Applications, 45, 1601-1610. http://dx.doi.org/10.1016/S0898-1221(03)00139-1 [21] Bromiley, P.A. Products and Convolutions of Gaussian Distributions. Tina Memo No.2003-003, Internal Report.www.tina-vision.net [22] Aliev, R.A., Gardashova, L.A. and Huseynov, O.H. (2012) Z-Numbers-Based Expected Utility. Proceedings of the Tenth International Conference on Application of Fuzzy Systems and Soft Computing, Lisbon, 29-30 August 2012, 4956. [23] Guo, P. and Tanaka, H. (2010) Decision Making with Interval Probabilities. European Journal of Operational Research, 203, 444-454. http://dx.doi.org/10.1016/j.ejor.2009.07.020