Probability of Osteoporotic Vertebral Fractures Assessment Based on DXA Measurements and Finite Element Simulation


Osteoporotic vertebral fractures represent major cause of disability, loss of quality of life and even mortality among the elderly population. Decisions on drug therapy are based on the assessment of risk factors for fracture, from bone mineral density measurements. The combination of biomechanical models with clinical studies could better estimate bone strength and support the specialists in their decision. A model to assess the probability of fracture, based on the Damage and Fracture Mechanics has been developed, evaluating the mechanical magnitudes involved in the fracture process from clinical bone mineral density measurements. The model is intended for simulating the degenerative process in the skeleton, with the consequent lost of bone mass and hence the decrease of its mechanical resistance which enables the fracture due to different traumatisms. Clinical studies were chosen, both in non-treatment conditions and receiving drug therapy, and fitted to specific patients according their actual bone mineral density measures. The predictive model is applied in a finite element simulation of the lumbar spine. The fracture zone would be determined according loading scenario (fall, impact, accidental loads, etc.), using the mechanical properties of bone obtained from the evolutionary model corresponding to the considered time. Bone mineral density evolution in untreated patients and in those under different treatments was analyzed. Evolutionary curves of fracture probability were obtained from the evolution of mechanical damage. The evolutionary curve of the untreated group of patients presented a marked increase of the fracture probability, while the curves of patients under drug treatment showed variable decreased risks, depending on the therapy type. The finite element model allowed obtaining detailed maps of damage and fracture probability, identifying high-risk local zones at vertebral body, which are the usual localization of osteoporotic vertebral fractures. The developed model is suitable for being used in individualized cases. The model might better identify at-risk individuals in early stages of osteoporosis and might be helpful for treatment decisions.

Share and Cite:

López, E. , Ibarz, E. , Herrera, A. , Mateo, J. , Lobo-Escolar, A. , Puértolas, S. and Gracia, L. (2014) Probability of Osteoporotic Vertebral Fractures Assessment Based on DXA Measurements and Finite Element Simulation. Advances in Bioscience and Biotechnology, 5, 527-545. doi: 10.4236/abb.2014.56063.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] National Osteoporosis Foundation (2010) Clinician’s Guide to Prevention and Treatment of Osteoporosis. National Osteoporosis Foundation, Washington DC.
[2] Johnell, O. and Kanis, J. (2005) Epidemiology of Osteoporotic Fractures. Osteoporosis International, 16, S3-S7.
[3] Cooper, C., O’Neill, T. and Silman A. (1993) The Epidemiology of Vertebral Fractures. Bone, 14, S89-S97.
[4] Wasnich, R.D. (1996) Vertebral Fracture Epidemiology. Bone, 18, S179-S183.
[5] Nevitt, M.C., Ettinger, B., Black, D.M., Stone, K., Jamal, S.A., Ensrud, K., Segal, M., Genant, H.K. and Cummings, S.R. (1998) The Association of Radiographically Detected Vertebral Fractures with Back Pain and Function: A Prospective Study. Annals of Internal Medicine, 128, 793-800.
[6] Kado, D.M., Browner, W.S., Palermo, L., Nevitt, M.C., Genant, H.K. and Cummings, S.R. (1999) Vertebral Fractures and Mortality in Older Women. Archives of Internal Medicine, 159, 1215-1220.
[7] Kaptoge, S., Armbrecht, G., Felsenberg, D., Lunt, M., O’Neill, T.W., Silman, A.J. and Reeve, J. (EPOS Study Group) (2004) When Should the Doctor Order a Spine X-Ray? Identifying Vertebral Fractures for Osteoporosis Care: Results from the European Prospective Osteoporosis Study (EPOS). Journal of Bone and Mineral Research, 19, 1982-1993.
[8] Delmas, P.D., van de Langerijt, L., Watts, N.B., Eastell, R., Genant, H., Grauer, A. and Cahall, D.L. (IMPACT Study Group) (2005) Underdiagnosis of Vertebral Fractures Is a Worldwide Problem: The IMPACT Study. Journal of Bone and Mineral Research, 20, 557-563.
[9] Ross, P.D. (1997) Clinical Consequences of Vertebral Fractures. American Journal of Medicine, 103, S30-S40.
[10] Kaptoge, S., Armbrecht, G., Felsenberg, D., Lunt, M., Weber, K., Boonen, S., Jajic, I.., Stepan, J.J., Banzer, D., Reisinger, W., Janott, J., Kragl, G., Scheidt-Nave, C., Felsch, B., Matthis, C., Raspe, H.H., Lyritis, G., Póor, G., Nuti, R., Miazgowski, T., Hoszowski, K., Armas, J.B., Vaz, A.L., Benevolenskaya, L.I., Masaryk, P., Cannata, J.B., Johnell, O., Reid, D.M., Bhalla, A., Woolf, A.D., Todd, C.J., Cooper, C., Eastell, R., Kanis, J.A., O’Neill, T.W., Silman, A.J. and Reeve, J. (2006) Whom to Treat? The Contribution of Vertebral X-Rays to Risk-Based Algorithms for Fracture Prediction. Results from the European Prospective Osteoporosis Study. Osteoporosis International, 17, 1369-1381.
[11] Ismail, A.A., Cockerill, W., Cooper, C., Finn, J.D., Abendroth, K., Parisi, G., Banzer, D., Benevolenskaya, L.I., Bhalla, A.K., Armas, J.B., Cannata, J.B., Delmas, P.D., Dequeker, J., Dilsen, G., Eastell, R., Ershova, O., Falch, J.A., Felsch, B., Havelka, S., Hoszowski, K., Jajic, I., Kragl, U., Johnell, O., López Vaz, A., Lorenc, R., Lyritis, G., Marchand, F., Masaryk, P., Matthis, C., Miazgowski, T., Pols, H.A., Poor, G., Rapado, A., Raspe, H.H., Reid, D.M., Reisinger, W., Janott, J., Scheidt-Nave, C., Stepan, J., Todd, C., Weber, K., Woolf, A.D., Ambrecht, G., Gowin, W., Felsenberg, D., Lunt, M., Kanis, J.A., Reeve, J., Silman, A.J. and O’Neill, T.W. (2001) Prevalent Vertebral Deformity Predicts Incident Hip though Not Distal Forearm Fracture: Results from European Prospective Osteoporosis Study. Osteporosis International, 12, 85-90.
[12] Lindsay, R., Silverman, S.L., Cooper, C., Hanley, D.A., Barton, I., Broy, S.B., Licata, A., Benhamou, L., Geusens, P., Flowers, K., Stracke, H. and Seeman, E. (2001) Risk of New Vertebral Fracture in the Year Following a Fracture. The Journal of the American Medical Association, 285, 320-323.
[13] Delmas, P.D., Genant, H.K., Crans, G.G., Stock, J.L., Wong, M., Siris, E. and Adachi, J.D. (2003) Severity of Prevalent Vertebral Fractures and the Risk of Subsequent Vertebral and Nonvertebral Fractures: Results from the MORE Trial. Bone, 33, 522-532.
[14] Christiansen, B.A. and Bouxsein, M.L. (2010) Biomechanics of Vertebral Fractures and the Vertebral Fracture Cascade. Current Osteoporosis Reports, 8, 198-204.
[15] Wustrack, R., Seeman, E., Bucci-Rechtweg, C., Burch, S., Palermo, L. and Black, D.M. (2012) Predictors of New and Severe Vertebral Fractures: Results from the HORIZON Pivotal Fracture Trial. Osteoporosis International, 23, 53-58.
[16] Briggs, A.M., Wrigley, T.V., van Dieën, J.H., Phillips, B., Lo, S.K., Greig, A.M. and Bennell, K.L. (2006) The Effect of Osteoporotic Vertebral Fracture on Predicted Spinal Loads in Vivo. European Spine Journal, 15, 1785-1795.
[17] Kanis, J.A., Borgstrom, F., De Laet, C., Johansson, H., Johnell, O., Jonsson, B., Oden, A., Zethraeus, N., Pfleger, B. and Khaltaev, N. (2005) Assessment of Fracture Risk. Osteoporosis International, 16, 581-589.
[18] Kanis, J.A., Black, D., Cooper, C., Dargent, P., Dawson-Hughes, B., De Laet, C., Delmas, P., Eisman, J., Johnell, O., Johnsson, B., Melton, L., Oden, A., Papapoulos, S., Pols, H., Rizzoli, R., Silman, A. and Tenenhouse, A. (2002) A New Approach to the Development of Assessment Guidelines for Osteoporosis. Osteoporosis International, 13, 527-536.
[19] Kanis, J.A., Oden, A., Johnell, O., De Laet, C., Brown, J., Burckhardt, P., Cooper, C., Christiensen, C., Cummings, S., Eisman, J.A., Fujiwara, S., Glüer, C., Goltzman, D., Hans, D., Krieg, M.A., La Croix, A., McCloskey, E., Mellstrom, D., Melton, L.J., Pols, H., Reeve, J., Sanders, K., Schott, A.M., Silman, A., Torgerson, D., van Staa, T, Watts, N.B. and Yoshimura, N. (2007) The Use of Clinical Risk Factors Enhances the Performance of BMD in the Prediction of Hip and Osteoporotic Fractures in Men and Women. Osteoporosis International, 18, 1033-1046.
[20] Kanis, J.A., Johnell, O., Oden, A., Johansson, E. and McCloskey, E. (2008) FRAXTM and the Assessment of Fracture Probability in Men and Women from the UK. Osteoporosis International, 19, 385-397.
[21] Van Geel, T.A., van den Bergh, J.P., Dinant, G.J. and Geusens, P.P. (2010) Individualizing Fracture Risk Prediction. Maturitas, 65, 143-148.
[22] Ensrud, K.E., Lui, L.Y., Taylor, B.C., Schousboe, J.T., Donaldson, M.G., Fink, H.A., Cauley, J.A., Hillier, T.A., Browner, W.S. and Cummings, S.R. (2009) A Comparison of Prediction Models for Fractures in Older Women: Is More Better? Archives of Internal Medicine, 169, 2087-2094.
[23] Moayyeri, A., Kaptoge, S., Dalzell, N., Bingham, S., Luben, R.N., Wareham, N.J., Reeve, J. and Khaw, K.T. (2009) Is QUS or DXA Better for Predicting the 10-Year Absolute Risk of Fracture? Journal of Bone and Mineral Research, 24, 1319-1325.
[24] Langsetmo, L., Leslie, W.D., Zhou, W., Goltzman, D., Kovacs, C.S., Prior, J., Josse, R., Olszynski, W.P., Davison, K. S., Anastassiades, T., Towheed, T., Hanley, D.A., Kaiser, S. and Kreiger, N. (2010) Using the Same Bone Density Reference Database for Men and Women Provides a Simpler Estimation of Fracture Risk. Journal of Bone and Mineral Research, 25, 2108-2114.
[25] Boehm, H.F., Horng, A., Notohamiprodjo, M., Eckstein, F., Burklein, D., Panteleon, A., Lutz, J. and Reiser, M. (2008) Prediction of the Fracture Load of Whole Proximal Femur Specimens by Topological Analysis of the Mineral Distribution in DXA-Scan Images. Bone, 43, 826-831.
[26] Schechner, Z., Luo, G., Kaufman, J.J. and Siffert, R.S. (2010) A Poisson Process Model for Hip Fracture Risk. Medical & Biological Engineering & Computing, 48, 799-810.
[27] Baker-LePain, J.C., Luker, K.R., Lynch, J.A., Parimi, N., Nevitt, M.C. and Lane, N.E. (2011) Active Shape Modeling of the Hip in the Prediction of Incident Hip Fracture. Journal of Bone and Mineral Research, 26, 468-474.
[28] Lee, T.C., McHugh, P.E., O’Brien, F.J., O’Mahoney, D., Taylor, D., Bruzzi, M., Rackard, S.M., Kennedy, O.D., Mahony, N.J., Harrison, N., Lohfield, S., Brennan, O., Gleeson, J., Hazenberg, J.G., Mullins, L., Tyndyk, M., McNamara, L.M., O’Kelly, K.U. and Prendergast, P.J. (2004) Bone for Life: Osteoporosis, Bone Remodelling and Computer Simulation. In: Prendergast, P.J. and McHugh, P.E., Eds., Topics in Bio-Mechanical Engineering, Trinity Centre for Bio-Engineering & National Centre for Biomedical Engineering Science, Dublin, 58-93.
[29] Boccaccio, A., Vena, P., Gastaldi, D., Franzoso, G., Pietrabissa, R. and Pappalettere, C. (2008) Finite Element Analysis of Cancellous Bone Failure in the Vertebral Body of Healthy and Osteoporotic Subjects. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 222, 1023-1036.
[30] Zhang, L., Yang, G., Wu, L. and Yu, B. (2010) The Biomechanical Effects of Osteoporosis Vertebral Augmentation with Cancellous Bone Granules or Bone Cement on Treated and Adjacent Non-Treated Vertebral Bodies: A Finite Element Evaluation. Clinical Biomechanics, 25, 166-172.
[31] MacNeil, J.A., Adachi, J.D., Goltzman, D., Josse, R.G., Kovacs, C.S., Prior, J.C., Olszynski, W., Davison, K.S. and Kaiser, S.M. (2011) Predicting Fracture Using 2D Finite Element Modelling. Medical Engineering & Physics, 34, 478-484.
[32] Kaneko, M., Ohnishi, I., Bessho, M., Matsumoto, T., Ohashi, S., Tobita, K. and Nakamura, K. (2011) Prediction of Proximal Femur Strength by a Quantitative Computed Tomography-Based Finite Element Method—Creation of Predicted Strength Data of the Proximal Femur According to Age Range in a Normal Population and Analysis of Risk Factors for Hip Fracture. The Journal of Bone & Joint Surgery (British Volume), 93B, 216.
[33] Bryan, R., Nair, P.B. and Taylor, M. (2009) Use of a Statistical Model of the Whole Femur in a Large Scale, Multi-Model Study of Femoral Neck Fracture Risk. Journal of Biomechanics, 42, 2171-2176.
[34] Bessho, M., Ohnish, I., Matsumoto, T., Ohashi, S., Matsuyama, J., Tobita, K., Kaneko, M. and Nakamura, K. (2009) Prediction of Proximal Femur Strength Using a CT-Based Nonlinear Finite Element Method: Differences in Predicted Fracture Load and Site with Changing Load and Boundary Conditions. Bone, 45, 226-231.
[35] Derikx, L.C., Vis, R., Meinders, T., Verdonschot, N. and Tanck, E. (2011) Implementation of Asymmetric Yielding in Case-Specific Finite Element Models Improves the Prediction of Femoral Fractures. Computer Methods in Biomechanics and Biomedical Engineering, 14, 183-193.
[36] Tellache, M., Pithioux, M., Chabrand, P. and Hochard, C. (2009) Femoral Neck Fracture Prediction by Anisotropic Yield Criteria. European Journal of Computational Mechanics, 18, 33-41.
[37] Amin, S., Kopperdhal, D.L., Melton 3rd, L.J., Achenbach, S.J., Therneau, T.M., Riggs, B.L., Keaveny, T.M. and Khosla, S. (2011) Association of Hip Strength Estimates by Finite-Element Analysis with Fractures in Women and Men. Journal of Bone and Mineral Research, 26, 1593-1600.
[38] Keaveny, T.M., Hoffmann, P.F., Singh, M., Palermo, L., Bilezikian, J.P., Greenspan, S.L. and Balck, D.M. (2008) Femoral Bone Strength and Its Relation to Cortical and Trabecular Changes after Treatment with PTH, Alendronate, and Their Combination as Assessed by Finite Element Analysis of Quantitative CT Scans. Journal of Bone and Mineral Research, 23, 1974-1982.
[39] Carter, D.R. and Hayes, W.C. (1977) The Compressive Behavior of Bone as a Two-Phase Porous Structure. The Journal of Bone and Joint Surgery, 59, 954-962.
[40] López, E., Ibarz, E., Herrera, A., Mateo, J., Lobo-Escolar, A., Puértolas, S. and Gracia, L. (2012) A Mechanical Model for Predicting the Probability of Osteoporotic Hip Fractures Based in DXA Measurements and Finite Element Simulation. Biomedical Engineering Online, 11, 84.
[41] Ste-Marie, L.G., Sod, E., Johnson, T. and Chines, A. (2004) Five Years of Treatment with Risedronate and Its Effects on Bone Safety in Women with Postmenopausal Osteoporosis. Calcified Tissue International, 75, 469-476.
[42] Cummings, S.R., San Martin, J., McClung, M.R., Siris, E.S., Eastell, R., Reid, I.R., Delmas, P., Zoog, H.B., Austin, M., Wang, A., Kutilek, S., Adami, S., Zanchetta, J., Libanati, C., Siddhanti, S. and Christiansen, C. (2009) Denosumab for Prevention of Fractures in Postmenopausal Women with Osteoporosis. The New England Journal Medicine, 361, 756-765.
[43] Harris, S.T., Watts, N.B., Genant, H.K., McKeever, C.D., Hangartner, T., Keller, M., Chesnut 3rd, C.H., Brown, J., Eriksen, E.F., Hoseyni, M.S., Axelrod, D.W. and Miller, P.D. (1999) Effects of Risedronate Treatment on Vertebral and Nonvertebral Fractures in Women with Postmenopausal Osteoporosis: A Randomized Controlled Trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. The Journal of American Medical Association, 282, 1344-1352.
[44] Reginster, J., Minne, H.W., Sorensen, O.H., Hooper, M., Roux, C., Brandi, M.L., Lund, B., Ethgen, D., Pack, S., Roumagnac, I. and Eastell, R. (2000) Randomized Trial of the Effects of Risedronate on Vertebral Fractures in Women with Established Postmenopausal Osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporosis International, 11, 83-91.
[45] McClung, M.R., Geusens, P., Miller, P.D., Zippel, H., Bensen, W.G., Roux, C., Adami, S., Fogelman, I., Diamond, T., Eastell, R., Meunier, P.J. and Reginster, J.Y. (Hip Intervention Program Study Group) (2001) Effect of Risedronate on the Risk of Hip Fracture in Elderly Women. The New England Journal Medicine, 344, 333-339.
[46] Papapoulos, S., Chapurlat, R., Libanati, C., Brandi, M.L., Brown, J.P., Czerwiński, E., Krieg, M.A., Man, Z., Mellström, D., Radominski, S.C., Reginster, J.Y., Resch, H., Ivorra, J.A.R., Roux, C., Vittinghoff, E., Austin, M., Daizadeh, N., Bradley, M.N., Grauer, A., Cummings, S.R. and Bone, H.G. (2012) Five Years of Denosumab Exposure in Women with Postmenopausal Osteoporosis: Results from the First Two Years of the FREEDOM Extension. Journal of Bone and Mineral Research, 27, 694-701.
[47] Mazess, R.B. and Barden, H. (1999) Bone Density of the Spine and Femur in Adult White Females. Calcified Tissue International, 65, 91-99.
[48] López, E., Herrera, A. and Gracia, L. (2011) Diseño y desarrollo de un modelo de predicción de fracturas osteoporóticas: Aplicación al Cuello Femoral y a la Columna Lumbar (in Spanish). Lambert Academic Publishing, Saarbrücken.
[49] Kargarnovin, M.H., Bagher-Ebrahimi, M. and Katoozian, H.R. (2006) Damage Initiation and Growth in a Long Bone under Increasing Monotonic Loading Using the Continuum Damage Mechanics Principle. Proceedings of the 5th International Conference on Engineering Computational Technology, Las Palmas de Gran Canaria, 12-15 September 2006, Paper 191.
[50] Paris, P. and Erdogan, F. (1963) A Critical Analysis of Crack Propagation Laws. Journal of Fluids Engineering, 85, 528-534.
[51] Taylor, D. (1998) Microcrack Growth Parameters for Compact Bone Deduced from Stiffness Variations. Journal of Biomechanics, 31, 587-592.
[52] Ibarz, E., Herrera, A., Más, Y., Rodríguez-Vela, J., Cegoñino, J., Puértolas, S. and Gracia, L. (2012) Development and Kinematic Verification of a Finite Element Model for the Lumbar Spine: Application to Disc Degeneration. BioMed Research International, 2013, 705185.
[54] White, A.A. and Panjabi, M.M. (1990) Clinical Biomechanics of the Spine. 2nd Edition, Lippincott Williams and Wilkins, Philadelphia.
[55] Kapandji, I.A. (2008) The Physiology of the Joints. 6th Edition, Volume III, Churchill Livingstone, New York.
[56] Denozière, G. and Ku, D.N. (2006) Biomechanical Comparison between Fusion of Two Vertebrae and Implantation of an Artificial Intervertebral Disc. Journal of Biomechanics, 39, 766-775.
[57] Dassault Systèmes.
[58] Pitzen, T., Geisler, F., Matthis, D., Müller-Storz, H., Barbier, D., Steudel, W.I. and Feldges, A. (2002) A Finite Element Model for Predicting the Biomechanical Behaviour of the Human Lumbar Spine. Control Engineering Practice, 10, 83-90.
[59] Rohlmann, A., Bauer, L., Zander, T., Bergmann, G. and Wilke, H.J. (2006) Determination of Trunk Muscle Forces for Flexion and Extension by Using a Validated Finite Element Model of the Lumbar Spine and Measured in Vivo Data. Journal of Biomechanics, 39, 981-989.
[60] Nasto, L.A., Fusco, A., Colangelo, D., Mormando, M., Di Giacomo, G., Rossi, B., De Marinis, L., Logroscino, C.A. and Pola, E. (2012) Clinical Predictors of Vertebral Osteoporotic Fractures in Post-Menopausal Women: A Cross-Sectional Analysis. European Review Medical Pharmacological Science, 16, 1227-1234.
[61] Dall’Ara, E., Pahr, D., Varga, P., Kainberger, F. and Zysset, P. (2012) QCT-Based Finite Element Models Predict Human Vertebral Strength in Vitro Significantly Better than Simulated DEXA. Osteoporosis International, 23, 563-572.
[62] Imai, K., Ohnishi, I., Bessho, M. and Nakamura, K. (2006) Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site. Spine (Phila Pa 1976), 31, 1789-1794.
[63] Sisodia, G.B. (2013) Methods of Predicting Vertebral Body Fractures of the Lumbar Spine. World Journal Orthopaedics, 4, 241-247.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.