[1]
|
Erguo, L. and Jinshou, Y. (2002) An Input-Training Neural Network Based Nonlinear Principal Component Analysis Approach for Fault Diagnosis. Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, 10-14 June 2002, 2755-2759.
|
[2]
|
Mehrotra, K., Mohan, C.K. and Ranka, S. (1997) Elements of Artificial Neural Networks. MIT Press, Cambridge.
|
[3]
|
Boynton, R.J., Balikhin, M.A., Billings, S.A. and Amariutei, O.A. (2013) Application of Nonlinear Autoregressive Moving Average Exogenous Input Models to Geospace: Advances in Understanding and Space Weather Forecasts. Annales Geophysicae, 31, 1579-1589. http://dx.doi.org/10.5194/angeo-31-1579-2013
|
[4]
|
Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C. and Meltzer, P.S. (2001) Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks. Nature Medicine, 7, 673-679. http://dx.doi.org/10.1038/89044
|
[5]
|
Looney, C.G. (1997) Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists. Oxford University Press, Oxford.
|
[6]
|
Widrow, B. and Lehr, M.A. (1990) 30 Years of Adaptive Neural Networks: Perceptron, Madaline, and Backpropagation. Proceedings of the IEEE, 78, 1415-1442. http://dx.doi.org/10.1109/5.58323
|
[7]
|
Leonard, J. and Kramer, M.A. (1990) Improvement of the Backpropagation Algorithm for Training Neural Networks. Computers & Chemical Engineering, 14, 337-341. http://dx.doi.org/10.1016/0098-1354(90)87070-6
|
[8]
|
Levenberg, K. (1944) A Method for the Solution of Certain Non-Linear Problems in Least Squares. Quarterly of Applied Mathematics, 2, 164-168.
|
[9]
|
Mahinthakumar, G. and Sayeed, M. (2005) Hybrid Genetic Algorithm: Local Search Methods for Solving Groundwater Source Identification Inverse Problems. Journal of Water Resources Planning and Management, 131, 45-57. http://dx.doi.org/10.1061/(ASCE)0733-9496(2005)131:1(45)
|
[10]
|
Burden, F. and Winkler, D. (2008) An Empirical Relationship between Interplanetary Conditions and DST. Methods in Molecular Biology, 458, 25-44.
|
[11]
|
Menezes Jr., J.M.P. and Barreto, G.A. (2008) Long-Term Time Series Prediction with the NARX Network: An Empirical Evaluation. Neurocomputing, 71, 3335-3343. http://dx.doi.org/10.1016/j.neucom.2008.01.030
|
[12]
|
Oliveira, A.G., Silva, M.R., Echer, E., Dal Lago, A., Braga, C.R., Mendonca, R.R.S., Schuch, N.J., Munakata, K. and Kuwabara, T. (2013) Simulations of the Interplanetary Magnetic Field Conditions with NARX Networks. 33rd International Cosmic Ray Conference, the Astroparticle Physics Conference, Rio de Janeiro, 2-9 July 2013.
|
[13]
|
Saroka, K.S., Caswell, J.M., Lapointe, A. and Persinger, M.A. (2013) Greater Electroencephalographic Coherence between Left and Right Temporal Lobe Structures during Increased Geomagnetic Activity. Neuroscience Letters, 560, 126-130.
|
[14]
|
Boteler, D.H. (2001) Assessment of Geomagnetic Hazard to Power Systems in Canada. Natural Hazards, 23, 101-120. http://dx.doi.org/10.1023/A:1011194414259
|
[15]
|
Mulligan, B.P., Hunter, M.D. and Persinger, M.A. (2010) Effects of Geomagnetic Activity and Atmospheric Power Variations on Quantitative Measures of Brain Activity: Replication of Azerbaijani Studies. Advances in Space Research, 45, 940-948. http://dx.doi.org/10.1016/j.asr.2009.12.008
|
[16]
|
Leske, R.A., Cummings, J.R., Mewaldt, R.A., Stone, E.C. and von Rosenvinge, T.T. (1995) Measurements of the Ionic Charge States of Solar Energetic Particles Using the Geomagnetic Field. The Astrophysical Journal Letters, 452, 149.
|
[17]
|
Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.C., Yashiro, S. and Zhukov, A.N. (2007) Solar and Interplanetary Sources of Major Geomagnetic Storms (DST ≤ -100 nT) during 1996-2005. Journal of Geophysical Research: Space Physics, 112.
|
[18]
|
Jefferson, M.F., Pendleton, N., Lucas, S.B. and Horan, M.A. (1997) Comparison of a Genetic Algorithm Neural Network with Logistic Regression for Predicting Outcome after Surgery for Patients with Nonsmall Cell Lung Carcinoma. Cancer, 79, 1338-1342.
|
[19]
|
Eftkhar, B., Mohammad, K., Eftekhar Ardebili, H., Ghodsi, M. and Ketabchi, E. (2005) Comparison of Artificial Neural Network and Logistic Regression Models for Prediction of Mortality in Head Trauma Based on Initial Clinical Data. BMC Bioinformatics and Decision Making, 5, 3.
|
[20]
|
Lundstedt, H., Gleisner, H. and Wintoft, P. (2002) Operational Forecasts of the Geomagnetic DST Index. Geophysical Research Letters, 29, 34-1-34-4. http://dx.doi.org/10.1029/2002GL016151
|