Diffusion Coefficient in Silicon Solar Cell with Applied Magnetic Field and under Frequency: Electric Equivalent Circuits

Abstract

In this paper, a theory on the determination of the diffusion coefficient of excess minority carriers in the base of a silicon solar cell is presented. The diffusion coefficient expression has been established and is related to both frequency modulation and applied magnetic field; the study is then carried out using the impedance spectroscopy method and Bode diagrams. From the diffusion coefficient, we deduced the diffusion length and the minority carriers’ mobility. Electric parameters were derived from the diffusion coefficient equivalent circuits.

Share and Cite:

Diao, A. , Thiam, N. , Zoungrana, M. , Sahin, G. , Ndiaye, M. and Sissoko, G. (2014) Diffusion Coefficient in Silicon Solar Cell with Applied Magnetic Field and under Frequency: Electric Equivalent Circuits. World Journal of Condensed Matter Physics, 4, 84-92. doi: 10.4236/wjcmp.2014.42013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Sontag, D., Hahn, G., Geiger, P., Fath, P. and Bucher, E. (2002) Two-Dimensional Resolution of Minority Carrier Diffusion Constants in Different Silicon Materials. Solar Energy Materials & Solar Cells, 72, 533-539.
http://dx.doi.org/10.1016/S0927-0248(01)00202-1
[2] Dieng, A., Zerbo, I., Wade, M., Maiga, A.S. and Sissoko, G. (2011) Three-Dimensional Study of a Polycrystalline Silicon Solar Cell: The Influence of the Applied Magnetic Field on the Electrical Parameters. Semiconductors Sciences and Technologies, 26, Article ID: 095023. http://dx.doi.org/10.1088/0268-1242/26/9/095023
[3] Schinke, C., Hinken, D., Bothe, K., Ulzhofer, C., Milsted, A., Schmidt, J. and Brendel, R. (2011) Determination of the Collection Diffusion Length by Electroluminescence Imaging. Energy Procedia, 8, 147-152.
http://dx.doi.org/10.1016/j.egypro.2011.06.116
[4] Hollenhorst, J.N. and Hasnain, G. (1995) Frequency Dependent Hole Diffusion in InGaAs Double Heterostructures. Applied Physics Letter, 67, 2203-2205. http://dx.doi.org/10.1063/1.115103
[5] Misiakos, K., Wang, C.H., Neugroschel, A. and Lindholm, F. (1990) Simultaneous Extraction of Minority-Carrier Transport Parameters in Crystalline Semiconductors by Lateral Photocurrent. Journal of Applied Physics, 67, 321-332.
http://dx.doi.org/10.1063/1.345256
[6] Mandelis, A. (1989) Coupled ac Photocurrent and Photothermal Reflectance Response Theory of Semiconducting P-N Junctions. Journal of Applied Physics, 66, 5572-5583.
http://dx.doi.org/10.1063/1.343662
[7] Lathi, Bhagwandas Pannalal: Signals, Systems and Controls. Intext Educational Publisher, New York, 1973-1974.
[8] Hübner, A., Aberle, A.G. and Hezel, R. (2001) 20% Efficient Bifacial Silicon Solar Cells. 14th European Photovoltaic Solar Energy Conference, Munich, 2001, 1796-1798.
[9] Meier, D.L., Hwang, J.-M. and Campbell, R.B. (1988) The Effect of Doping Density and Injection Level on Minority-Carrier Lifetime as Applied to Bifacial Dendritic Web Silicon Solar Cells. IEEE Transactions on Electron Devices, ED-35, 70-78.
[10] Madougou, S., Made, F., Boukary, M.S. and Sissoko, G. (2007) I-V Characteristics for Bifacial Silicon Solar Cell Studied under a Magnetic Field. Advanced Materials Research, 18-19, 303-312.
http://dx.doi.org/10.4028/www.scientific.net/AMR.18-19.303
[11] Thiam, Nd., Diao, A., Ndiaye, M., Dieng, A., Thiam, A., Sarr, M., Maiga, A.S. and Sissoko, G. (2012) Electric Equivalent Models of Intrinsic Recombination Velocities of a Bifacial Silicon Solar Cell under Frequency Modulation and Magnetic Field Effect. Research Journal of Applied Sciences, Engineering and Technology, 4, 4646-4655.
[12] Kittel, C. (1972) Introduction à la Physique de l’état Solide. 284-285.
[13] Cardona, M. (1969) Modulation Spectroscopy. Solid State Physics Supplement 11.
[14] Seeger, K. (1973) Semiconductor Physics. Print in Austria by B. Müller, 269.
http://dx.doi.org/10.1007/978-3-7091-4111-3
[15] Sze, S.M. (1981) Physics of Semiconductor Devices. John Wiley & Sons, Hoboken.
[16] Chenvidhya, D., Kirtikara, K. and Jivacate, C. (2003) A New Characterization Method for Solar Cell Dynamic Impedance. Solar Energy Materials and Solar Cells, 80, 459-464.
http://dx.doi.org/10.1016/j.solmat.2003.06.011
[17] Suresh, M.S. (1996) Measurement of Solar Cell Parameters Using Impedance Spectroscopy. Solar Energy Materials and Solar Cells, 43, 21-28. http://dx.doi.org/10.1016/0927-0248(95)00153-0
[18] Kumar, R.A., Suresh, M.S. and Nagaraju, J. (2001) Measurement of AC Parameters for Gallium Arsenide (GaAs/Ge) Solar Cell by Impedance Spectroscopy. IEEE Transactions on Electron Devices, 48, 2177-2179.
http://dx.doi.org/10.1109/16.944213
[19] Thiam, N., Diao, A., Ndiaye, M., Zerbo, I., Sarr, M., Maiga, A.S. and Sissoko, G. (2013) Study of the Photothermal Response of a Monofacial Solar Cell in Dynamic Regime Under a Multispectral Illumination. Research Journal of Applied Sciences, Engineering and Technology, 5, 134-141.
[20] Wang, C.H. and Neugroschel, A. (1991) Minority-Carrier Lifetime and Surface Recombination Velocity Measurement by Frequency-Domain Photoluminescence. IEEE Transactions on Electron Devices, 38, 2169-2180.
http://dx.doi.org/10.1109/16.83745
[21] Mora-Sero, I., Garcia-Belmonte, G., Boix, P.P., Vazquez, M.A. and Bisquert, J. (2009) Impedance Spectroscopy Characterisation of Highly Efficient Silicon Solar Cells under Different Light Illumination Intensities. Energy and Environmental Science, 2, 678-686. http://dx.doi.org/10.1039/b812468j

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.