[1]
|
Veselago, V.G. (1968) The Electrodynamics of Substance with Simultaneously Negative Values of ε and μ. Soviet Physics Uspekhi, 10, 509. http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
|
[2]
|
Taflove, A. (1995) Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood.
|
[3]
|
Luebbers, R.J., Hunsberger, F., Kunz, K.S., Standler, R.B. and Schneider, M. (1990) A Frequency Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials. IEEE Transactions on Electromagnetic Compatibility, 32, 222-227. http://dx.doi.org/10.1109/15.57116
|
[4]
|
Luebbers, R.J., Hunsberger, F. and Kunz, K.S. (1991) A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma. IEEE Transactions on Antennas and Propagation, 39, 29-34. http://dx.doi.org/10.1109/8.64431
|
[5]
|
Luebbers, R.J. and Hunsberger, F. (1992) FDTD for Nth-Order Dispersive Media. IEEE Transactions on Antennas and Propagation, 40, 1297-1301. http://dx.doi.org/10.1109/8.202707
|
[6]
|
Zhang, Y.-Q. and Ge, D.-B. (2009) A Unified FDTD Approach for Electromagnetic Analysis of Dispersive Objects. Progress in Electromagnetics Research, PIER96, 155-172.
|
[7]
|
Jiang, Y.-N., Ge, D.-B. and Ding, S.-J. (2008) Analysis of TF-SF Boundary for 2D-FDTD with Plane P-Wave Propagation in Layered Dispersive and Lossy Media. Progress in Electromagnetics Research, PIER83, 157-172.
|
[8]
|
Akyurtlu, A. and Werner, D.H. (1990) A Novel Dispersive FDTD Formulation for Modeling Transient Propagation in Chiral Metamaterials. IEEE Transactions on Antennas and Propagation, 52, 2267-2276. http://dx.doi.org/10.1109/TAP.2004.834153
|
[9]
|
Kashiwa, T., Yoshida, N. and Fukai, I. (1990) A treatment by the Finite-Difference Time-Domain Method of the Dispersive Characteristics Associated with Orientation Polarization. IEEE Transactions on Antennas and Propagation, E73, 1326-1328.
|
[10]
|
Kashiwa, T. and Fukai, I. (1990) A Treatment by the FD-TD Method of the Dispersive Characteristics Associated with Electronic Polarization. Microwave and Optical Technology Letters, 3, 203-205. http://dx.doi.org/10.1002/mop.4650030606
|
[11]
|
Kashiwa, T., Ohtomo, Y. and Fukai, I. (1990) A Finite-Difference Time-Domain Formulation for Transient Propagation in Dispersive Media Associated with Cole-Cole’s Circular ARC Law. Microwave and Optical Technology Letters, 3, 416-419. http://dx.doi.org/10.1002/mop.4650031204
|
[12]
|
Joseph, R.M., Hagness, S.C. and Taflove, A. (1991) Direct Time Integration of Maxwell’s Equations in Linear Dispersive Media with Absorption for Scattering and Propagation of Femtosecond Electrogmagnetic Pulses. Optics Letters, 16, 1412-1414. http://dx.doi.org/10.1364/OL.16.001412
|
[13]
|
Gandhi, P., Gao, B.Q. and Chen, J.Y. (1992) A Frequency-Dependent Finite-Difference Time Domain Formulation for Induced Current Calculations in Human Beings. Bioelectromagentics, 13, 543-556. http://dx.doi.org/10.1002/bem.2250130609
|
[14]
|
Gandhi, P., Gao, B.Q. and Chen, J.Y. (1993) A Frequency-Dependent Finite-Difference Time Domain Formulation for General Dispersive Media. IEEE Transactions on Microwave Theory and Techniques, 41, 658-665. http://dx.doi.org/10.1109/22.231661
|
[15]
|
Goorjian, P.M. and Taflove, A. (1992) Direct Time Integration of Maxwell’s Equations in Nonlinear Dispersive Media for Propagation and Scattering of Femto Second Electromagnetic Solutions. Optics Letters, 17, 180-182. http://dx.doi.org/10.1364/OL.17.000180
|
[16]
|
Sullivan, D.M. (1992) Frequency-Dependent FDTD Methods Using Z Transforms. IEEE Transactions on Antennas and Propagations, 40, 1223-1230. http://dx.doi.org/10.1109/8.182455
|
[17]
|
Demir, V., Elsherbeni, A.Z. and Arvas, E. (2005) FDTD Formulation for Dispersive Chiral Media Using the Z Transform Method. IEEE Transactions on Antennas and Propagations, 53, 3374-3384. http://dx.doi.org/10.1109/TAP.2005.856328
|
[18]
|
Feise, M.W., Schneider, J.B. and Bevelacqua, P.J. (2004) Finite-Difference and Pseudospectraltime-Domain Methods Applied to Backward-Wave Metamaterials. IEEE Transactions on Antennas and Propagations, 52, 2955-2962. http://dx.doi.org/10.1109/TAP.2004.835274
|
[19]
|
Lee, J.Y., Lee, J.H., Kim, H.S., Kang, N.W. and Jung, H.K. (2005) Effective Medium Approach of Left Handed Material Using a Dispersive FDTD Method. IEEE Transactions on Magnetics, 41, 1484-1487. http://dx.doi.org/10.1109/TMAG.2005.844566
|
[20]
|
Ziolkowski, R.W. and Heyman, E. (2001) Wave Propagation in Media Having Negative Permittivity and Permeability. Physical Review E, 64, Article No. 056625. http://dx.doi.org/10.1103/PhysRevE.64.056625
|
[21]
|
Ziolkowski, R.W. (2001) Superluminal Transmission of Information through an Electromagnetic Metamaterial. Physical Review E, 63, Article No. 046604.
|
[22]
|
Suwailam, M.M.B. and Chen, Z.Z. (2004) FDTD Modeling of Lorentzian DNG Meta-Materials with the Z-Transform. In: 3rd International Conference on Computational Electromagnetics and Its Applications Proceedings, IEEE, New York, 40-43.
|
[23]
|
Lee, K.H., Ahmed, I., Goh, R.S.M., Khoo, E.H., Li, E.P. and Hung, T.G.G. (2011) Implementation of the FDTD Method Based on Lorentz-Drude Dispersive Model on GPU for Plasmonic Applications. Progress in Electromagnetics Research, 116, 441-456.
|
[24]
|
Berenger, J.P. (1994) A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Computational Physics, 114, 185-200. http://dx.doi.org/10.1006/jcph.1994.1159
|
[25]
|
Roden, A. and Gedney, S.D. (2000) Convolutional PML (CPML): An Efficient FDTD Implementation of the CFSPML for Arbitrary Media. Microwave and Optical Technical Letter, 27, 334-339.
|
[26]
|
Mukherjee, S., Karmakar, S., Goswami, C. and Ghatak, R. (2012) Electromagnetic Wave Propagation Modeling in Lorentzian DNG Metamaterial by Auxiliary Differential Equation Based ADI-FDTD. In: Proceedings of 2012 1st International Conference on Emerging Technology Trends in Electronics, Communication and Networking, IEEE, New York, 1-4.
|