Geographic Information Technologies for the Study of Mass Wasting Hazards

Abstract

The purpose of the research was to obtain the mass wasting hazard map for the state of Vargas, central coast of Venezuela, using GIS technology. The work was developed through the heuristic method with the generation of thematic digital maps, univariate statistical treatment, weighting of each variable and quantifying the relationship of each parameter unit regarding mass wasting processes. The algorithm designed to perform map algebra was designed using the variables: surface geology, slope, slope orientation, terrain curvature, moisture topographic index, power index surface flow rate and capacity sediment transport and the rate normalized difference vegetation. The results show a distribution of landslide hazard with the highest values in the west central part of Vargas state, where the dominant lithology is incompetent, and combined with topographic elements, determining high instability, meanwhile the lower hazard areas were found in specific areas such as the middle watershed areas east of the state. The calibration of this model shows a reliability of 80%, so it is highly advisable to use the information generated in this work by governmental and non-governmental organizations in the planning, management and use of land.

Share and Cite:

Pacheco, H. and Suárez, C. (2014) Geographic Information Technologies for the Study of Mass Wasting Hazards. International Journal of Geosciences, 5, 519-526. doi: 10.4236/ijg.2014.55048.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Singer, A., Rojas, C. and Lugo, M. (1983) Inventario nacional de riesgos geologicos: Estado preliminar, mapa, Glosario y comentarios. Fundacion Venezolana de Investigaciones Sismologicas, Departamento de Ciencias de La Tierra, Caracas.
[2] Abarca, O. (2010) Desarrolllo de un modelo de geoprocesamiento para la valoracion productiva y tributaria de tierras agricolas en Venezuela. Tesis Doctoral, Universidad Politecnica de Madrid. E.T.S. De Ingenieros en Topografia Geodesia y Cartografia.
[3] Tucker, G. and Hancock, G. (2010) Modelling Landscape Evolution. Earth Surface Processes and Landforms, 35, 28-50. http://dx.doi.org/10.1002/esp.1952
[4] Scheidl, Ch. and Rickenmann, D. (2010) Empirical Prediction of Debris-Flow Mobility and Deposition on Fans. Earth Surface Processes and Landforms, 35, 157-173.
[5] Van Westen, C.J., Rengers, N. and Terelien, J. (2007) Prediction of the Occurrence of Slope Instability Phenomena through GIS-Based Hazard Zonation. Geologische Rundschau, 86, 404-414. http://dx.doi.org/10.1007/s005310050149
[6] Hidrografica (2007) ¿Que es la Geomatica. [Documento en linea] Disponible.
http://members.tripod.com/hidrografica/geomatica.htm
[7] Hervas, J. and Rosin, L. (1996) Landslide Mapping by Textural Analysis of Daedalus ATM Data. 11th Thematic Conference on Applied Geologic Remote Sensing, Las Vegas, ERIM, Vol. 2, 394-402.
[8] Aguilar, R., Rodriguez, J. and Rodriguez, J. (2009) Sistema de Solicitud de Imagenes de LPAIS. MAPPING INTERACTIVO. Revista Internacional de Ciencias de La Tierra. Abril-Mayo No. 32.
[9] Chang, T. and Chao, R. (2006) Application of Back-Propagation Networks in Debris Flow Prediction. Engineering Geology, 85, 270-280. http://dx.doi.org/10.1016/j.enggeo.2006.02.007
[10] Chiverrell, R., Foster, G., Thomas, G. and Marshall, P. (2010) Sediment Transmission and Storage: The Implications for Reconstructing Landform Development. Earth Surface Processes and Landforms, 35, 4-15.
http://dx.doi.org/10.1002/esp.1806
[11] Instituto Geografico de Venezuela Simon Bolivar/Ministerio del Ambiente y de los Recursos Naturales (2002) Proyecto Avila, Mapa de Riesgos: Geologia, escala 1:25.000. Autor, Caracas.
[12] Beven, K. and Kirkby, M. (1979) TOPMODEL User Notes. Windows Version 97.01. Lancaster University, UK.
http://www.es.lancs.ac.uk/hfdg/freeware/hfdg_freeware_top.htm
[13] Beven, K. and Kirkby, M. (1997) TOPMODEL: A Critique. Hydrological Processes, 11, 1069-1085
http://earth.boisestate.edu/home/jmcnamar/hydanalysis/Notes/topmodel_beven.pdf
[14] Abarca, O. and Bernabe, M. (2008) Desarrollo metodologico para la simulacion hidrologica de caudales de estiaje con el SIG SEXTANTE. MAPPING INTERACTIVO. Revista Internacional de Ciencias de La Tierra.
[15] Olaya, V. (2007) Fundamentos de Analisis Geografico con SEXTANTE.
http://campusvirtual.unex.es/cala/cala/course/view.php?id=146
[16] Wheaton, J., Brasington, J., Darby, S. and Sear, D. (2010) Accounting for Uncertainty in DEMs from Repeat Topographic Surveys: Improved Sediment Budgets. Earth Surface Processes and Landforms, 35, 136-156.
[17] Yang, Q.K., McVicar, T.R., Van Niel, T.G., Hutchinson, M.F., Li, L.T. and Zhang, X.P. (2007) Improving a Digital Elevation Model by Reducing Source Data Errors and Optimising Interpolation Algorithm Parameters: An Example in the Loess Plateau, China. International Journal of Applied Earth Observation and Geoinformation, 9, 235-246.
http://dx.doi.org/10.1016/j.jag.2006.08.004
[18] NASA (2009) The Shuttle Radar Topography Mission (SRTM). Informacion en Linea: Disponible.
http://www2.jpl.nasa.gov/srtm/
[19] Svoray, T. and Ben-Said, S. (2006) Soil Loss, Water Ponding and Sediment Deposition Variations as a Consequence of Rainfall Intensity and Land Use: A Multi-Criteria Analysis. Earth Surface Processes and Landforms, 35, 202-216.
[20] Roa, J. (2007) Estimacion de areas susceptibles a deslizamientos mediante datos e imagenes satelitales: Cuenca del rio Mocoties, estado Merida-Venezuela. Revista Geografica Venezolana, 48, 183-219.
[21] Sampaio, E. (2006) Modelagem espacial dinamica aplicada ao estudo de movimentos de massa em uma regiao da serra do mar paulista, na escala de 1:10.000. Universidade Estadual Paulista. Instituto de Geociencias e Ciencias Exatas. Tese de Doutorado.
[22] Rafaelli, S. (2006) Paisaje erosivo en cuencas de montana. Modelacion con extrapolacion espacial ascendente. Tesis de Doctorado en Ciencias de La Ingenieria. Universidad Nacional de Cordova. Facultad de Ciencias Exactas, Fisicas y Matematicas, 196.
[23] Urbani, F., Rodriguez, J., Barboza, L., Rodriguez, S., Cano, V., Melo, L., Castillo, A., Suarez, J., Vivas, V. and Fournier, H. (2000) Geologia del estado Vargas, Venezuela. [Documento en DC]. En Seminario Internacional Los Aludes Torrenciales de Diciembre 1999 en Venezuela, Caracas. Disponible: Seminario Internacional Los Aludes Torrenciales de Diciembre 1999 en Venezuela, Jornadas de Investigacion de la Facultad de Ingenieria 2000. Universidad Central de Venezuela, Facultad de Ingenieria, Instituto de Mecanica de Fluidos.
[24] Wieczorek, G., Larsen, M., Eaton, L., Morgan, B. and Blair, J. (2001) Debris-Flow and flooding Hazards Associated with the December 1999 Storm in Coastal Venezuela and Strategies for Mitigation. US Geological Survey, Open File Report 01-0144.
[25] Takahashi, T., Nakagawa, H., Satofuka, Y. and Kawaike, K. (2001) Flood and Sediment Disasters Triggered by 1999 Rainfall in Venezuela; A River Restoration Plan for an Alluvial Fan. Journal of Natural Disaster Science, 23, 65-82.
[26] Larsen, M.C. (2008) Rainfall-Triggered Landslides, Anthropogenic Hazards, and Mitigation Strategies. Advances in Geosciences, 14, 147-153. www.adv-geosci.net/14/147/2008/ http://dx.doi.org/10.5194/adgeo-14-147-2008
[27] Feliziani, P., De Luca, P., Barrientos, C., Bastardo, S. and Ramirez, R. (1985) Estudio Geotecnico del area Metropolitana de Caracas. Sociedad Venezolana de Geologos. VI Congreso Geologico Venezolano, 7, 4612-4681.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.