Spin-Magnetic Moment of Dirac Electron, and Role of Zitterbewegung

Abstract

The spin-magnetic moment of the electron is revisited. In the form of the relativistic quantum mechanics, we calculate the magnetic moment of Dirac electron with no orbital angular-momentum. It is inferred that obtained magnetic moment may be the spin-magnetic moment, because it is never due to orbital motion. A transition current flowing from a positive energy state to a negative energy state in Dirac Sea is found. Application to the band structure of semiconductor is suggested.

Share and Cite:

Sasabe, S. (2014) Spin-Magnetic Moment of Dirac Electron, and Role of Zitterbewegung. Journal of Modern Physics, 5, 534-542. doi: 10.4236/jmp.2014.57064.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Zutic, I., Fabian, J. and Sarma, S.D. (2004) Reviews of Modern Physics, 76, 323-410.
http://dx.doi.org/10.1103/RevModPhys.76.323
[2] Sasabe, S. and Tsuchiya, K. (2008) Physics Letters A, 372, 381-386. http://dx.doi.org/10.1016/j.physleta.2007.07.078
[3] Schrodinger, E. (1930) Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl., 24, 418-428.
[4] Barut, A.O. and Bracken, A.J. (1981) Physical Review D, 23, 2454-2463. http://dx.doi.org/10.1103/PhysRevD.23.2454
[5] Sasabe, S. (2000) Electrical Engineering in Japan, 132, 1-6.
http://dx.doi.org/10.1002/(SICI)1520-6416(20000715)132:1<1::AID-EEJ1>3.0.CO;2-O
[6] Castro, A.H., et al. (2009) Reviews of Modern Physics, 81, 109-162. http://dx.doi.org/10.1103/RevModPhys.81.109
[7] Zawadzki, W. and Rusin, T.M. (2011) Journal of Physics: Condensed Matter, 23, 143201.
http://dx.doi.org/10.1088/0953-8984/23/14/143201
[8] Cannata, F., Ferrari, L. and Russo, G. (1990) Solid State Communications, 74, 309-312.
http://dx.doi.org/10.1016/0038-1098(90)90192-E
[9] Ferrari, L. and Russo, G. (1990) Physical Review B, 42, 7454-7461. http://dx.doi.org/10.1103/PhysRevB.42.7454
[10] Rusin, T.M. and Zawadzki, W. (2007) Physical Review B, 76, 195439.
[11] Zawadzki, W. (2005) Physical Review B, 72, 085217. http://dx.doi.org/10.1103/PhysRevB.72.085217
[12] Katsnelson, M. (2006) The European Physical Journal B, 51, 157-160. http://dx.doi.org/10.1140/epjb/e2006-00203-1
[13] Zawadzki, W. (2006) Physical Review B, 74, 205439. http://dx.doi.org/10.1103/PhysRevB.74.205439
[14] Lurié, D. and Cremer, S. (1970) Physica, 50, 224-240. http://dx.doi.org/10.1016/0031-8914(70)90004-2
[15] Dirac, P.A.M. (1958) The Principle of Quantum Mechanics. Oxford University Press, Section 70.
[16] Schiff, L.I. (1968) Quantum Mechanics. McGraw-Hill, Section 43.
[17] Jackson, J.D. (1975) Classical Electrodynamics. John Wiley & Sons, New York, Section 5.6.
[18] Landau, L.D. and Lifschitz, E.M. (1975) The Classical Theory of Fields. Pergamon Press, Section 44.
[19] Dirac, P.A.M. (1958) The Principle of Quantum Mechanics. Oxford University Press, Section 67-69.
[20] Schiff, L.I. (1968) Quantum Mechanics. McGraw-Hill, Section 7.
[21] Cohen, M.H. and Blount, E.I. (1960) Philosophical Magazine, 5, 115-126.
http://dx.doi.org/10.1080/14786436008243294
[22] Wolff, F.A. (1964) Journal of Physics and Chemistry of Solids, 25, 1057-1068.
http://dx.doi.org/10.1016/0022-3697(64)90128-3
[23] Sasabe, S. and Tsuchiya, K. (2008) T. IEE Japan A, 128, 313-314.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.