Analysis of Activation Energies & Experimental Evidence for Energetic Phase Separation in GexSe1-xGlassy System


Glass science reveals peculiar properties due to the lack of long range order and presence of heterogeneity in Chalcogenide glasses. In thermal studies, structural relaxation at the glass transition region is governed by the activation energy of the cooperative unit (zU). In the cooperative molecular dynamics, we are considering the analysis of three activation energies, namely activation energy per BMS (U), activation energy of the cooperative unit (zU) and the apparent activation energy (z2U). From the energetic dynamics of activation energy analysis across the GexSe1-x glass series, data represent three-phase segregation. From our data, we also observed that the value of UCRR/RTg across the GexSe1-x glass series is nominally changed from 34.343 to 36.19.

Share and Cite:

Sharma, D. and Mohan Awasthi, A. (2014) Analysis of Activation Energies & Experimental Evidence for Energetic Phase Separation in GexSe1-xGlassy System. New Journal of Glass and Ceramics, 4, 38-41. doi: 10.4236/njgc.2014.42005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Kryshenik, V.M., Ivanitsky, V.P. and Kovtunenko, V.S. (2005) Irreversible Relaxations Transformations in Amor- phous Chalcogenide. Journal of Optoelectronics and Advanced Materials, 7, 2953-2962.
[2] Kalb, J., Spaepen, F., Leervad Pedersen, T.P. and Wuttig, M. (2003) Viscosity and Elastic Constants of Amorphous Thin Films of Te Alloys Used for Optical Data Storage. Journal of Applied Physics, 94, 4908-4912.
[3] Kasap, S.O., Polischuk, B., Aiyah, V. and Yannacopoulos, S. (1990) Drift Mobility Relaxations in a-Se. Journal of Applied Physics, 67, 1918-1922.
[4] Koughia, K., Shakoor, Z., Kasap, S.O. and Marshall, J.M. (2005) Density of Localized Electronic States in a-Se from Electron Time of Flight Photocurrent Measurements. Journal of Applied Physics, 97, 33706-33717.
[5] Pirovano, A., Lacaita, A.L., Pellizzer, F., Kostylev, S.A., Benvenuti, A. and Bez, R. (2004) Low Field Amorphous State Resistance and Thershold Voltage Drift in Chalcogenide Materials. Transactions on Electron Devices, 51, 714-719.
[6] Ielmini, D., Lacaita, A.L. and Mantegazza, D. (2007) Recovery and Drift Dynamics of Resistance and Thershold Voltages in Phase Change Memories. Transactions on Electron Devices, 54, 308-315.
[7] Tiwari, G.P., Ramanujan, R.V., Gonalb, M.R., Prasad, R., Raj, P., Badguzar, B.P. and Goswami, G.L. (2001) Structural Relaxation in Metallic Glasses. Materials Science and Engineering A, 499, 304-306.
[8] Roorda, S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Dierker, S., Dennis, B.S., Eaglesham, D.J., Spaepen, F. and Fuoss, P. (1991) Structural Relaxation and Defect Annihilation in Pure Amorphous Silicon. Physical Review B, 44, 3702-3725.
[9] Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C. (1985) Calorimetric Studies of Crystallization and Relaxation in Amorphous Silicon and Germanium Prepared by Ion Implantation. Journal of Applied Physics, 57, 1795-1804.
[10] Sharma, D., Ingale, A. and Awasthi, A.M. (2005) Confined Acoustic Modes and Spectral Determination of Network Connectivity: Raman Signatures Of Nanometric Structure in g-GexSe1-x. Solid State Communications, 134, 653-658.
[11] Foret, M., Vacher, R., Courtens, E. and Monaco, G. (2002) Merging of the Acoustic Branch with the Boson Peak in Densified Silica Glasses. Physical Review B, 66, 024204-024210.
[12] Sokolov, A.P., Kisliuk, A., Soltwisch, M. and Quitmann, D. (1992) Medium Range Order in Glasses: Comparison of Raman and Diffraction Measurements. Physical Review Letters, 69, 1540-1543.
[13] Masciovecchio, C., Mazzacurati, V., Monaco, G., Ruocco, G., Scopigno, T., Sette, F., Benassi, P., Consulo, A., Fontana, A., Krisch, M., Mermet, A., Montagna, M., Rossi, F., Sampoli, M., Signorelli, G. and Verbeni, R. (1999) Acoustic Nature of Boson Peak in Vitreous Silica. Philosophical Magazine Part B, 79, 2013-2020.
[14] Fontana, A., Dell’Anna, R., Montagna, M., Rossi, F., Viliani, G., Ruocco, G., Sampoli, M., Buchenau, U. and Wischnewski, A. (1992) The Raman Coupling Function in Amorphous Silica and the Nature of the Long Wavelength Excitations in Disordered Systems. Europhysics Letters, 47, 56-62.
[15] Hehlen, B., Courtens, E., Vacher, R., Yamanaka, A., Kataoka, M. and Inoue, K. (2000) Hyper-Raman Scattering Observation of the Boson Peak in Vitreous Silica. Physical Review Letters, 84, 5355-5358.
[16] Matic, A., Engberg, D., Masciovecchio, C. and Borjesson, L. (2001) Sound Wave Scattering in Network Glasses. Physical Review Letters, 86, 3803-3806.
[17] Sharma, D., Sampath, S., Lalla, N.P. and Awasthi, A.M. (2005) Mesoscopic Organization and Structural Phases in Network Forming GexSe1-x Glasses. Physica B, 357, 290-298.
[18] Awasthi, A.M. and Sampath, S. (2001) Template Compositional Behavior of Relaxation Time Divergence in GexSe1-x. Materials Science and Engineering: A, 304-306, 476-479.
[19] Awasthi, A.M. and Sampath, S. (2002) Thermo Kinetic Anomalies across Rigidity Threshold in GexSe1-x. Materials Transactions, 43, 2046-2049.
[20] Moynihan, C.T., Macedo, P.B., Montrose, C.J., Gupta, P.K., Debolt, M.A., Dill, J.F., Dom, B.E., Drake, P.W., Esteal, A.J., Elterman, P.B., Moeller, R.P., Sasabae, H. and Wilder, J.A. (1976) Structural Relaxation in Vitreous Materials. Annals of the New York Academy of Sciences, 279, 15-35.
[21] Moynihan, C.T., Esteal, A.J., Wilder, J. and Tucker, J. (1974) Dependence of the Glass Transition Temperature on Heating and Cooling Rate. Journal of Physical Chemistry, 78, 2673-2677.
[22] Gotze, W. and Sjogren, L. (1996) Comments on the Mode Coupling Theory for Structural Relaxation. Chemical Physics, 212, 47-59.
[23] Adam, G. and Gibbs, J.H. (1965) On the Temperature Dependence of Cooperative Relaxation Properties in Glass Forming Liquids. Journal of Chemical Physics, 43, 139-146.
[24] McCrum, N.G., Read, B.E. and Williams, G. (1987) Anelastic and Dielectric Effects in Polymeric Solids. Wiley, New York.
[25] Ferry, J.D. (1980) Visco-Elastic Properties of Polymers. Wiley, New York.
[26] Doliwa, B. and Heuer, A. (2002) How Do Dynamic Heterogeneities Evolve in Time? Journal of Non-Crystalline Solids, 307-310, 32-39.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.