Share This Article:

Is There a Geomagnetic Component Involved with the Determination of G?

Abstract Full-Text HTML XML Download Download as PDF (Size:275KB) PP. 450-452
DOI: 10.4236/ijg.2014.54042    3,821 Downloads   4,548 Views   Citations

ABSTRACT

We compared the small quantitative changes (range) in G over repeated measures (days) with recently improved methods of determinations and those recorded over 20 years ago. The range in the Newtonian constant of gravitation G is usually in the order of 400 ppm as reflected in experimentally-determined values. The moderate strength negative correlation between daily fluctuations in G, in the range of 3 × 10-3 of the average value, and an index of global geomagnetic activity reported by Vladimirsky and Bruns in 1998 was also found for the daily fluctuations in the angular deflection θ (in arcseconds) and geomagnetic activity within 24 hr for the Quinn et al. 2013 data. A temporal coupling between increases of geomagnetic activity in the order of 10-9 T with decreases in G in the order of 10-14 m3·kg-1·s-2 could suggest a recondite shared source of variance. The energy equivalence for this change in G and geomagnetic activity within 1 L of water is ~3 × 10-14 J.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Persinger, M. and St-Pierre, L. (2014) Is There a Geomagnetic Component Involved with the Determination of G?. International Journal of Geosciences, 5, 450-452. doi: 10.4236/ijg.2014.54042.

References

[1] Quinn, T., Parks, H., Speake, C. and Davis, R. (2013) Improved Determination of G Using Two Methods. Physics Review Letters, 111, 101102. http://dx.doi.org/10.1103/PhysRevLett.111.101102
[2] Vladimirskii, B.M. (1996) Measurements of the Gravitational Constant and Heliogeophysical Electromagnetic Perturbations. Biophysics, 40, 915-923.
[3] Vladimirsky, B.M. and Bruns, A.V. (1998) Influence of the Sector Structure of the Interplanetary Magnetic Field on the Results of Measurements of the Gravitational Constant. Biophysics, 43, 720-725.
[4] Persinger, M.A. (2012) Potential Origins of a Quantitative Equivalence between Gravity and Light. Open Astronomy Journal, 5, 41-43. http://dx.doi.org/10.2174/1874381101205010041

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.