[1]
|
Diggle, P.J., Heagerty, P., Liang, K. and Zeger, S.L. (2002) Analysis of Longitudinal Data. 2nd Edition, Oxford University, Oxford.
|
[2]
|
Pang, Z. and Xue, L.G. (2012) Estimation for the Single-Index Models with Random Effects. Computational Statistics and Data Analysis, 56, 1837-1853. http://dx.doi.org/10.1016/j.csda.2011.11.007
|
[3]
|
Yang, S.G., Xue, L.G. and Li, G.R. (2014) Simultaneous Confidence Band for Single-Index Random Effects Models with Longitudinal Data. Statistics and Probability Letters, 85, 6-14. http://dx.doi.org/10.1016/j.spl.2013.10.014
|
[4]
|
Carroll, R.J., Fan, J., Gijbels, I. and Wand, M.P. (1998) Generalized Partially Linear Single-Index Models. Journal of the American Statistical Association, 92, 477-489. http://dx.doi.org/10.1080/01621459.1997.10474001
|
[5]
|
Xia, Y., Li, W.K., Tong, H. and Zhang, D. (2004) A Goodness-Of-Fit Test for Single-Index Models. Statistica Sinica, 14, 1-39.
|
[6]
|
Zhu, L.X. and Xue, L.G. (2006) Empirical Likelihood Confidence Regions in a Partially Linear Single-Index Model. Journal of the Royal Statistical Society: Series B, 68, 549-570. http://dx.doi.org/10.1111/j.1467-9868.2006.00556.x
|
[7]
|
Wang, J.L., Xue, L.G., Zhu, L.X. and Chong, Y. (2010) Estimation for a Partial-Linear Single-Index Model. Annals of Statistics, 38, 246-274.
|
[8]
|
Chen, J., Gao, J. and Li, D. (2013) Estimation in a Single-Index Panel Data Models with Heterogeneous Link Functions. Econometric Reviews, 33, 928-955. http://dx.doi.org/10.1080/07474938.2012.690687
|
[9]
|
Zeger, S.L. and Diggle, P.J. (1994) Semiparametric Models for Longitudinal Data with Application to CD4 Cell Numbers in HIV Seroconverters. Biometrics, 50, 689-699.
http://dx.doi.org/10.2307/2532783
|
[10]
|
Ke, C.L. and Wang, Y.D. (2001) Semiparametric Nonlinear Mixed-Effects Models and Their Applications (with Discussion). Journal of the American Statistical Association, 96, 1272-1298. http://dx.doi.org/10.1198/016214501753381913
|
[11]
|
Wu, H.L. and Zhang, J.T. (2002). Local Polynomial Mixed-Effects Models for Longitudinal Data. Journal of the American Statistical Association, 97, 883-897. http://dx.doi.org/10.1198/016214502388618672
|
[12]
|
Field, C.A., Pang, Z. and Welsh, A.H. (2008) Bootstrapping Data with Multiple Levels of Variation. Canadian Journal of Statistics, 36, 521-539. http://dx.doi.org/10.1002/cjs.5550360403
|
[13]
|
Frank, I.E. and Friedman, J.H. (1993) A Statistical View of Some Chemometrics Regression Tools. Technometrics, 35, 109-148. http://dx.doi.org/10.1080/00401706.1993.10485033
|
[14]
|
Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B, 58, 267-288.
|
[15]
|
Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B, 67, 301-320. http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
|
[16]
|
Zou, H. (2006) The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association, 101, 1418-1429. http://dx.doi.org/10.1198/016214506000000735
|
[17]
|
Fan, J.Q. and Li, R.Z. (2001) Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96, 1348-1360. http://dx.doi.org/10.1198/016214501753382273
|
[18]
|
Ueki, M. (2009) A Note on Automatic Variable Selection Using Smooth-Threshold Estimating Equations. Biometrika, 96, 1005-1011. http://dx.doi.org/10.1093/biomet/asp060
|
[19]
|
Li, G.R., Lian, H., Feng, S.Y. and Zhu, L.X. (2013) Automatic Variable Selection for Longitudinal Generalized Linear Models. Computational Statistics and Data Analysis, 61, 174-186. http://dx.doi.org/10.1016/j.csda.2012.12.015
|
[20]
|
Fan, J. and Gijbels, I. (1996) Local Polynomial Modeling and Its Applications. Chapman & Hall, London.
|
[21]
|
Liang, K.Y. and Zeger, S.L. (1986) Longitudinal Data Analysis Using Generalized Linear Models. Biometrika, 73, 13-22.
http://dx.doi.org/10.1093/biomet/73.1.13
|
[22]
|
Thall, P. and Vail, S.C. (1990) Some Covariance Models for Longitudinal Count Data with Over Dispersion. Biometrics, 46, 657-671. http://dx.doi.org/10.2307/2532086
|
[23]
|
Bai, Y., Fung, W.K. and Zhu, Z.Y. (2009) Penalized Quadratic Inference Functions for Single-Index Models with Longitudinal Data. Journal of Multivariate Analysis, 100, 152-161. http://dx.doi.org/10.1016/j.jmva.2008.04.004
|