Share This Article:

Structure and Curvatures of Trajectories of a 2D Log-Gas

Abstract Full-Text HTML Download Download as PDF (Size:439KB) PP. 32-38
DOI: 10.4236/jamp.2014.25005    3,665 Downloads   4,278 Views  
Author(s)    Leave a comment

ABSTRACT

A model is constructed to study the statistical properties of irregular trajectories of a log-gas whose positions are those of the complex eigenvalues of the unitary Ginibre ensemble. It is shown that statistically the trajectories form a structure that reveals the eigenvalue departure positions. It is also shown that the curvatures of the ensemble of trajectories are Cauchy distributed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Pato, M. and Bohigas, O. (2014) Structure and Curvatures of Trajectories of a 2D Log-Gas. Journal of Applied Mathematics and Physics, 2, 32-38. doi: 10.4236/jamp.2014.25005.

References

[1] Forrester, P.J. (2010) Log-Gases and Random Matrices. Princeton University Press.
[2] Bohigas, O., de Carvalho, J.X. and Pato, M.P. (2013) Physical Review E, 86, 031118.
[3] Pato, M.P., Bohigas, O. and de Carvalho, J.X. (2013) Proc. of the 4th Interational Interdisciplinary Chaos Symposium, Springer-Verlag.
[4] Mehta, M.L. (2004) Random Matrices. 3rd Edition, Academic Press, London.
[5] Ginibre, J. (1965) Journal of Mathematical Physics, 6, 440.
[6] Girardeau, M. (1960) Journal of Mathematical Physics, 1, 516.
[7] Kolomeisky, E.B., Newman, T.J., Straley, J.P. and Qi, X. (2000) Physical Review Letters, 85, 1146.
[8] Laughlin, R.B. The Quantum Hall Effect. Springer-Verlag, New York.
[9] Di Francesco, P., Gaudin, M., Itzykson, C. and Lesage, F. (1994) International Journal of Modern Physics A, 9, 4257.
[10] Persson, E., Rotter, I., Stockmann, H.-J. and Bath, M. (2000) Physical Review Letters, 85, 2478.
[11] Wilkinson, J. (1988) Journal of Physics A, 21, 4021.
[12] Zakrzewski, J. and Delande, D. (1993) Physical Review E, 47, 1650.
[13] Simons, B.D., Hashimoto, A., Courtney, M., Kleppner, D. and Altshuler, B.L. (1993) Physical Review Letters, 71, 2899.
[14] von Oppen, F. (1995) Physical Review E, 51, 2647.
[15] Leboeuf, P. and Siebert, M. (1999) Physical Review E, 60, 3969.
[16] Hussein, M.S., Malta, C.P., Pato, M.P. and Tufaile, A.P.B. (2002) Physical Review E, 65, 057203.
[17] Ellegaard, C., Guhr, T., lindemann, K., Nygard, J. and Oxborrow, M. (1999) Physical Review Letters, 77, 4918.
[18] Ellegaard, C., Guhr, T., Oxborrow, M. and Schaadt, K. (1996) Physical Review Letters, 83, 2171.
[19] Pato, M.P., Schaadt, K., Tufaile, A.P.B., Ellegaard, C., Nogueira, T.N. and Sartorelli, J.C. (2005) Physical Review E, 71, 037201.
[20] Fyodorov, Y.V. (2012) Acta Physica Polonica A, 120, 100-113.
[21] Pato, M.P. (2002) Physica A, 312, 153.
[22] Bohigas, O. and Pato, M.P.J. (2010) Physical Review E, 77, 011122.
[23] O’Rourke, S. (2010) Journal of Statistical Physics, 138, 1045.
[24] Terence, T. and Vu Van (2011) Acta Mathematica, 206, 127.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.