Magnetic, Structural and Morphological Characterization of Sr2GdRuO6 Double Perovskite
L.T. Corredor, D.A. Landínez Téllez, J.L. Pimentel Jr, P. Pureur, J. Roa-Rojas
.
DOI: 10.4236/jmp.2011.23023   PDF    HTML     5,069 Downloads   10,381 Views   Citations

Abstract

We report structural, morphological and magnetic properties of the Sr2GdRuO6 compound, which is used as precursor oxide in the production process of RuSr2GdCu2O8 superconducting ruthenocuprates. The crystalline structure was studied by X-ray diffraction and Rietveld refinement. Results reveal that material crystallizes in a monoclinic double perovskite, space group P21/n (#14). Scanning Electron Microscopy experiments on samples show homogeneous granular morphology with grain size from 3 up to 7 μm. Semiquantitative analysis of composition was performed by the Energy Dispersive X-ray technique. Experimental results are 98% in agreement with the theoretical stoichiometry. Curves of magnetization as a function of temperature exhibit an antiferromagnetic-like behaviour, with Néel temperature TN=15.3 K and magnetic effective moment 8.72μB.

Share and Cite:

L. Corredor, D. Téllez, J. Jr, P. Pureur and J. Roa-Rojas, "Magnetic, Structural and Morphological Characterization of Sr2GdRuO6 Double Perovskite," Journal of Modern Physics, Vol. 2 No. 3, 2011, pp. 154-157. doi: 10.4236/jmp.2011.23023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. Bauerfeind, W. Widder and H. F. Braun, Physica C, Vol. 254, 1995, p. 151. doi:10.1016/0921-4534(95)00574-9
[2] T. P. Papageorgiou, T. Herrmannsd?rfer, R. Dinnerbier, T. Mai, T. Ernst, M. Wunschel and H. F. Braun, Physica C , Vol. 377, 2002, p. 383. doi:10.1016/S0921-4534(01)01291-6
[3] L. T. Yang, J. K. Liang, Q. L. Liu, C. Q. Jin, X. M. Feng, G. B. Song, J. Luo, F S. Liu and G. H. Rao, Journal of Solid State Chemistry, Vol. 177, 2004, p. 1072. doi:10.1016/j.jssc.2003.10.015
[4] L. T. Corredor, J. Velasco Zárate, D. A. Landínez Téllez, F. Fajardo, J. Arbey Rodríguez and M. J. Roa-Rojas, Physica B, Vol. 404, 2009, p. 2733. doi:10.1016/j.physb.2009.06.078
[5] T. Nachtrab, C. Bernhard, C. T. Lin, D. Koelle and R. Kleiner, C. R. Physique, Vol. 7, 2006, p. 6885. doi:10.1016/j.crhy.2005.11.010
[6] A. A. Vasiliev, M. Aindow, Z. H. Han, J. I. Budnik, W. A. Hines, P. W. Klamut, M. Maxwell and B. Dabrowski, Applied Physic Letters, Vol. 85, 2004, p. 3217. doi:10.1063/1.1805176
[7] C. Bernhard, J. L. Tallon, C. Niedermayer, T. Blasius, A. Golnik, E. Br¨ucher, R. K. Kremer, D. R. Noakes, C. E. Stronach, and E. J. Ansaldo, Physical Review B, Vol. 59, 1999, p. 14099. doi:10.1103/PhysRevB.59.14099
[8] J. D. Jorgensen, O. Chmaissem, H. Shaked, S. Short, P. W. Klamut, B. Dabrowski, J. L. Tallon, Physical Review B, Vol. 63, 2003, p. 054440. doi:10.1103/PhysRevB.63.054440
[9] A. C. Larson and R. B Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR, 2000, p. 86.
[10] M. W. Lufaso and P. M. Woodward, Acta Crystallographica B, Vol. 57, 2001, p. 725. doi:10.1107/S0108768101015282
[11] C. J. Howard, B. J. Kennedy and P. M. Woodward, Acta Crystallographica B, Vol. 59, 2003, p. 463. doi:10.1107/S0108768103010073
[12] R. Sáez-Puche, E. Climent-Pascual, R. Ruiz-Bustos, M. A. Alario-Franco and M. T. Fernández-Díaz, Progress in Solid State Chemistry Vol. 35, 2007, p. 211. doi:10.1016/j.progsolidstchem.2007.02.001
[13] Y. Doi and Y. Hinatsu, Journal of Physics Condensed Matter, Vol. 11, 1999, p. 4813. doi:10.1088/0953-8984/11/25/302
[14] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College Publishing, Fort Worth, 1976, p. 657.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.