Teleonomy: The Feedback Circuit Involving Information and Thermodynamic Processes
Gennaro Auletta
DOI: 10.4236/jmp.2011.23021   PDF        3,468 Downloads   7,552 Views   Citations


Informational and entropic - metabolic aspects are strictly intertwined in organisms. An overview of bacterial chemotaxis is presented as a good and simple model to study these issues. In particular, the paper shall focus on the ability of the organism to restore its homeostasis not only from a metabolic point of view but also from an informational point of view. The organism cannot accomplish this task without a good “model” of the environment and without undertaking appropriate actions that will somehow modify it or at least the relation “organism - environment”. Subsequently, the concept of teleonomy is developed as a dynamical trade - off between segregation and openness of the organism both from a thermodynamic and informational point of view.

Share and Cite:

G. Auletta, "Teleonomy: The Feedback Circuit Involving Information and Thermodynamic Processes," Journal of Modern Physics, Vol. 2 No. 3, 2011, pp. 136-145. doi: 10.4236/jmp.2011.23021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Auletta, “A Paradigm Shift in Biology?,” Information, Vol. 1, 2010, pp. 28-59. 9/1/1/28/.
[2] G. Auletta, “Cognitive Biology: Dealing with Infor- mation from Bacteria to Minds,” Oxford University Press, Oxford, 2011.
[3] F. Jacob and J. Monod, “Genetic Regulatory Mechanisms in the Synthesis of Proteins,” Journal of Molecular Biology, Vol. 3, No. 3, 1961, pp. 318-356.
[4] J. A. Shapiro, “Genome Organization and Reorganization in Evolution: Formatting for Computation and Function,” In: L. Van Speybroeck, G. Van de Vijver and D. De Waele, Eds., From Epigenesis to Epigenetics: The Genome in Context, New York Academy of Sciences, pp. 111-134.
[5] H. C. Berg and D. A. Brown, “Chemotaxis in Escherichia Coli Analysed by Three-Dimensional Tracking,” Nature, Vol. 239, No. 5374, 1972, pp. 500-504.
[6] M. S. Jurica and B. L. Stoddard, “Mind Your Bs and Rs: Bacterial Chemotaxis, Signal Transduction and Protein Recognition,” Structure, Vol. 6, No. 7, 1998, pp. 809- 813.
[7] R. B. Bourret and A. M. Stock, “Molecular Information Processing: Lessons from Bacterial Chemotaxis,” The Journal of Biological Chemistry, Vol. 277, No. 12, pp. 9625-9628.
[8] C. Rollins and F. W. Dahlquist, “The Methyl-Accepting Chemotaxis Proteins of E. Coli: A Repellent-Stimulated, Covalent Modification, Distinct from Methylation,” Cell, Vol. 25, No. 2, 1981, pp. 333-340.
[9] S. J. Kleene, A. C. Hobson and J. Adler, “Attractants and Repellents Influence Methylation and Demethylation of Methyl-Accepting Chemotaxis Proteins in an Extract of Escherichia Coli,” PNAS, Vol. 76, 1979, pp. 6309-6313.
[10] M. A. Muskavitch, E. N. Kort, M. S. Springer, M. F. Goy and J. Adler, “Attraction By Repellents: An Error in Sensory Information Processing by Bacterial Mutants,” Science, Vol. 201, pp. 63-65.
[11] C. V. Rao, J. R. Kirby and A. P. Arkin, “Design and Diversity in Bacterial Chemotaxis: A Comparative Study in Escherichia Coli and Bacillus Subtilis,” PLOS Biology, Vol. 2, No. 2, 2004, pp. 0239-0252. http://www.ncbi. nlm.
[12] J. S. Parkinson, “Signal Transduction Schemes of Bacteria,” Cell, Vol. 73, pp. 857-71.
[13] S. M. Block, J. E. Segall and H. C. Berg, “Impulse Responses in Bacterial Chemotaxis,” Cell, Vol. 31, No. 1, 1982, pp. 215-226.
[14] J. E. Segall, S. M. Block and H. C. Berg, “Temporal Comparisons in Bacterial Chemotaxis (impulse response/step response/adaptation/gain),” PNAS, Vol. 83, 1986, pp. 8987-8991. Cell, Vol. 73, 1993, pp. 857-871.
[15] H. C. Berg and E. M. Purcell, “Physics of Chemo- reception,” Biophysical Journal, Vol. 20, No. 2, 1977, pp. 193-219.
[16] S. P. Strong, B. Freedman, W. Bialek and R. Koberle, “Adaptation and Optimal Chemotactic Strategy in E. coli.,” Physical Review, Vol. E57, No. 44, 1998, pp. 4604-4617.
[17] B. W. Andrews, T. M. Yi and P. A. Iglesias, “Optimal Noise Filtering in the Chemotactic Response of Escherichia Coli,” PLOS Computational Biology, Vol. 2, No. 11, 2006, p. e154. /articles/PMC1636674/
[18] J. Monod, J. Wyman and J. P. Changeux, “On the Nature of Allosteric Transitions: A Plausible Model,” Journal of Molecular Biology, Vol. 12, No. 88, 1965, pp. 88-118.
[19] T. S. Shimizu, Y. Tu and H. C. Berg, “A Modular Gradient-Sensing Network for Chemotaxis in Escherichia Coli Revealed by Responses to Time-Varying Stimuli,” Molecular Systems Biology, Vol. 6, No. 1, 2010, p. 382.
[20] T. M. Yi, Y. Huang, M. I. Simon and J. Doyle, “Robust Perfect Adaptation in Bacterial Chemotaxis through Integral Feedback Control,” PNAS, Vol. 97, No. 9, 2000, pp. 4649-4653.
[21] U. Alon, M. G. Surette, N. Barkai and S. Leibler, “Robustness in Bacterial Chemotaxis,” Nature, Vol. 397, 1999, pp. 168-171.
[22] K. J. Friston, “A Theory of Cortical Responses,” Philosophical Transactions of the Royal Society, London, Vol. 360, 2005, pp. 815-836.
[23] K. J. Friston and S. Kiebel, “Predictive Coding under the Free - Energy Principle,” Philosophical Transactions of the Royal Society, Vol. B364, No. 1521, 2009, pp. 1211-1221.
[24] K. J. Friston and K. E. Stephan, “Free-Energy and the Brain,” Synthese, Vol. 159, 2007, pp. 417-458.
[25] K. J. Friston, J. Kilner and L. Harrison, “A Free Energy Principle for the Brain,” Journal of Physiology, Paris, Vol. 100, No. 1-3, 2006, pp. 70-87.
[26] D. J. C. McKay, “A Free-Energy Minimization Algorithm for Decoding and Cryptanalysis,” Electronic Letters, Vol. 31, No. 6, 1995, pp. 445-447.
[27] K. J. Friston, J. Daunizeau, J. Kilner and S. J. Kiebel, “Action and Behavior: A Free-Energy Formulation,” Biological Cybernetics, Vol. 102, No. 3, 2010, pp. 227-260.
[28] D. Clausznitzer, O. Oleksiuk, L. Lovdok, V. Sourjik and R. G. Endres, “Chemotactic Response and Adaptation Dynamics in Escherichia Coli,” PLOS Computational Biology, Vol. 6, 2010, p. 1000784.
[29] J. Monod, “Le Hasard et la Nécessité,” Seuil, 1970.
[30] E. S. Russell, “The Interpretation of Development and Heredity,” Claredon Press, Oxford, 1930.
[31] G. Auletta, G. Ellis and L. Jaeger, “Top-Down Causation by Information Control: From a Philosophical Problem to a Scientific Research Program,” Journal of the Royal Society: Interface, Vol. 5, 2008, pp. 1159-1172.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.