Heat shock proteins development in different stages of schistocerca gregaria as response to heavy metals intoxication

DOI: 10.4236/ns.2011.33028   PDF   HTML     5,024 Downloads   9,945 Views  


The induction of heat shock proteins in different stages of S. gergaria exposed to long and short term contamination with heavy metals, Cd and Pb in food was determined, revealing a prominent variable effect in response to the term of exposure and the type of contamination. HSP 70 was specially quantified and characterized to reveal the probability of using HSP as a biomarker for pollution.

Share and Cite:

Yousef, H. , Afify, A. , Meguid, A. and Hassan, H. (2011) Heat shock proteins development in different stages of schistocerca gregaria as response to heavy metals intoxication. Natural Science, 3, 218-226. doi: 10.4236/ns.2011.33028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Schmidt, G.H. (1986) Use of grasshoppers as test animals for the ecotoxicological evaluation of chemicals in the soil. Agriculture, Ecosystem & Environment, 16, 175-188. doi:10.1016/0167-8809(86)90003-4
[2] Warcha?owska-?liwa, E., and Maryańska-Nadachowska, A. (1991) Chromosome aberrations in a natural population of Tetrix tenuicornis (Sahlb.) (Tetrigidae: Orthoptra), Folia Biologica, 39, 5-15.
[3] Devkota, B., and Schmidt, G.H. (2000) Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agriculture, Ecosystem & Environment, 78: 85-91. doi:10.1016/S0167-8809(99)00110-3
[4] Warcha?owska-?liwa, E., Niklin?ka, M., G?rlich, A., Michailova, P., and Pyza, E. (2005). Heavy metal accumulation, heat shock protein expression and cytogenetic changes in Tetrix tenuicornis (L.) (Tetrigidae, Orthoptera) from polluted areas, Environmental Pollution, 133: 373- 381. doi:10.1016/j.envpol.2004.05.013
[5] Migula, P. and Bińkowska, K. (1993) Feeding strategies of grasshoppers (Chorthippus sp.) on heavy metal contaminated plants. Science of the Total Environment, 1071- 1083. doi:10.1016/S0048-9697(05)80112-3
[6] Augustyniak, M., Mesjasz-Przybytowicz, J., Nakonieczny, M., Dybowska, M., Przybylowicz, W., and Migula, p. (2002) Food relations between Chrysolina pardolina and Berkheya coddiia—nikckiel hyperaccumulator from South Africa ultramafic outcrops. Fresenius Environmental Bulletin, 11, 85-90.
[7] Muller, W. E., Koziol, C., Kurelec, B., Dapper, J., Batel, R., and Rinkevich, B. (1995) Combinatory effects of temperature stress and nonionic organic pollutant on stress protein (HSP 70) gene expression in fresh water sponge, Ephydatia fluviatilis. Environmental Toxicology and Chemistry, 14, 1203-1208.
[8] Welch, W. J. (1993) How cells respond to stress. Scientific American, 268, 56-64. doi:10.1038/scientificamerican0593-56
[9] Palleros, D.R., Welch, W. J., and Fink, A. L. (1991) Interaction of hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proceedings of the National Academy of Sciences, 88, 5719-5723. doi:10.1073/pnas.88.13.5719
[10] Srivastava, P. (1993) Peptide-binding heat shock proteins in the endoplasmic reticulum: role in immune response to cancer and in antigen presentation. Advances in Cancer Research, 62, 153-177. doi:10.1016/S0065-230X(08)60318-8
[11] Moseley, P. L. (2000). Exercise, stress, and the immune conversation. Exercise and Sport Sciences Reviews, 28, 128-132.
[12] Bradford, M. A. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-54. doi:10.1016/0003-2697(76)90527-3
[13] Laemmli, U.K. (1970) Cleavage of structural proteins during the assemble of the head of bacteriophage T4. Nature, 227, 680-685. doi:10.1038/227680a0
[14] Currie, S., Tufts, B.L., and Moyes, C.D. (1999) Influence of bioenergetic stress on heat shock protein gene expression in nucleated red blood cells of fish. American Journal of Physiology-regulatory Integrative and Comparative Physiology, 276, 990-996.
[15] Mizzen, L. A., and Welch, W. J. (1988) Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. The Journal of Cell Biology, 106, 1105-1116. doi:10.1083/jcb.106.4.1105
[16] Bettencourt, B.R., Feder, F.E., and Cavicchi, S. (1999) Experimental evolution of Hsp 70 expression and thermotolerance in Drosophila melanogaster. Evolution, 53, 484-492. doi:10.2307/2640784
[17] Sorensen, J.G., Michalak, P., Justesen, J., and Loeschcke, V. (1999) Expression of the heat- shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance. Hereditas, 131, 155-164. doi:10.1111/j.1601-5223.1999.00155.x
[18] Lansing, E., Justesen, J., and Loeschcke, V. (2000) Variation in the expression of Hsp70, the major heat-shock protein, and thermotolerance in larval and adult selection lines of Drosophila melanogaster. The Journal of Thermal Biology, 25, 443-450. doi:10.1016/S0306-4565(00)00008-5
[19] Schlesinger, M.J. (1986) Heat shock proteins: the search for functions. The Journal of Cell Biology, 103, 321-325.
[20] Feder, M.E., and Hofman, G.E. (1999) Heat-shock proteins, molecular chaperones and stress response: evolutionary and ecological Physiology. Annual Review of Physiology, 61, 243-282. doi:10.1146/annurev.physiol.61.1.243
[21] Lindquist, S. (1986) The heat-shock response. Annual Review of Biochemistry, 55, 1151-1191. doi:10.1146/annurev.bi.55.070186.005443
[22] Mahroof, R., Zhu, K. Y., and Subramanyam, B. (2005) Changes in expression of heat shock proteins in Tribolium castaneum (Coleoptera: Tenebrionidae) in relation to developmental stage, exposure time, and temperature. Annals of the Entomological Society of America, 98, 100-107. doi:10.1603/0013-8746(2005)098[0100:CIEOHS]2.0.CO;2
[23] Ehrnsperger, M., Buchner, J., Gaestel, M. (1997) Structure and function of small heat shock proteins. In: Fink, A.L., Goto, Y. (Eds.), Molecular Chaperones in the Life Cycle of Proteins. Structure, Function and Mode of Action. Marcell Dekker, New York, 533-575.
[24] Mouchet, F., Baudrimont, M., Gonzalez, P., Cuenot, Y., Bourdineaud, J.P., Boudou, A., and Gauthier, L. (2006) Genotoxic and stress inductive potential of cadmium in Xenopus laevis larvae. Aquatic Toxicology, 78, 157-166. doi:10.1016/j.aquatox.2006.02.029
[25] Blechinger, S.R., Kusch, R.C., Haugo, K., Matz, C., Chivers, D.P., and Krone, P.H. (2007) Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish. Toxicology and Applied Pharmacology, 224, 72-80. doi:10.1016/j.taap.2007.06.025
[26] Yousef, H. A., Afify, A., Hasan, H. M., and Abdel Meguid, A. (2010) DNA damage in hemocytes of Schistocerca gregaria (Orthoptera: Acrididae) exposed to contaminated food with cadmium and lead. Natural Science, 2, 292-297. doi:10.4236/ns.2010.24037
[27] K?hler, H.R., and Eckwert, H. (1997) The induction of stress proteins (hsp) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy metal exposure. 2. Joint toxicity and transfer to field situations. Ecotoxicology, 6, 263-274. doi:10.1023/A:1018635012910
[28] Hofmann, G.E., and Somero, G.N. (1995) Evidence for protein damage at environmental temperatures: Seasonal changes in levels of ubiquitin conjugates and Hsp 70 in the interidal mussel. Journal of Experimental Biology, 198, 1509-1518.
[29] Pyza, E., Mak, P., Kramarz, P., and Laskowski, R. (1997) Heat shock proteins (Hsp 70) as biomarkers in ecotoxicological studies. Ecotoxicology and Environmental Safety, 38, 244-251. doi:10.1006/eesa.1997.1595
[30] S?rensen, J.G., and Loeschcke, V. (2001) Larval crowding in Drosophila melanogaster induces Hsp 70 expression, and leads to increased adult longevity and adult thermal stress resistance. All Aspects of Insect Physiology, 47, 1301- 1307. doi:10.1016/S0022-1910(01)00119-6
[31] K?hler, H.R., Zanger, M., Eckwert, H., and Einfeldt, I. (2000) Selection favours low Hsp70 levels in chronically metal-stressed soil arthropods. The Journal of Evolutionary Biology, 13, 569-582. doi:10.1046/j.1420-9101.2000.00210.x
[32] S?rensen, J.G., and Loeschcke, V. (2002) Natural adaptation to environmental stress via physiological clock- regulation of stress resistance in Drosophila. Ecology Letters, 5, 16-19. doi:10.1046/j.1461-0248.2002.00296.x
[33] Kristensen, T.N., Dahlgaard, J., and Loeschcke, V. (2002) Inbreeding affects Hsp70 expression in two species of Drosophila even at benign temperatures. Evolutionary Ecology Research, 4, 1209-1216.
[34] Cheney, C. M., and Shearn A. (1983) Developmental regulation of imaginal disc proteins: Synthesis of a heat shock protein under non-heat shock conditions. Developmental Biology, 95, 325-330. doi:10.1016/0012-1606(83)90033-7
[35] Barka, S., Pavillon, J.F., and Amiard, J.C. (2001) Influence of different essential and nonessential metals on MTLP levels in the copepod Tigriopus brevicornis. Comp. Comparative Biochemistry and Physiology, 128C, 479-493.
[36] Wepener, V., vanVuren, J.H.J., Chatiza, F.P., Mbizi, Z., Slabbert, L., and Masola, B. (2005) Active biomonitoring in fresh water environments: early warning signals from biomarker in assessing biological effects of diffuse sources of pollutants. Physics and Chemistry of the Earth, 3, 751-761.
[37] K?hler, H.R., Triebskorn, R., St?cker, W., Kloetzel, P., and Alberti, G. (1992) The 70 KDa heat shock protein (hsp 70) in soil invertebrates: a possible tool for monitoring environmental toxicants. Archives of Environmental Contamination and Toxicology, 22, 234-238.
[38] Hassen, W., Gollia, E.E., Baudrimont, I., Mobiob, A.T., Ladjimi, M.M., Creppy, E.E., and Bacha, H. (2005) Cytotoxicity and Hsp 70 induction in HepG2 cells in response to zearalenone and cytoprotection by sub-lethal heat shock. Toxicology, 207, 293-301. doi:10.1016/j.tox.2004.10.001
[39] Niu, P., Liu, L., Gong, Z., Tan, H., Wang, F., Yuan, J., Feng, Y., Wei, Q., Tanguay, R.M., and Wu, T. (2006) Over expressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones, 11, 162- 169. doi:10.1379/CSC-175R.1
[40] Karouna–Renier, N.K., and Zehr, J.P. (2003) Short-term exposures to chronically toxic copper concentrations induce Hsp 70 proteins in midge larvae (Chironomus tentans). Science of the Total Environment. 312, 267-272. doi:10.1016/S0048-9697(03)00254-7
[41] Eckwert, H., and K?hler, H.R. (1997) The indicative value of the Hsp 70 stress response as a marker for metal effects in Oniscus asellus (Isopoda) field populations: variability between populations from metal-polluted and uncontaminated sites. Applied Soil Ecology, 6, 275-282. doi:10.1016/S0929-1393(97)00020-6

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.