Generalized Lagrange Structure of Deformed Minkowski Spacetime

DOI: 10.4236/ns.2014.66040   PDF   HTML   XML   2,800 Downloads   4,145 Views   Citations

Abstract

We discuss the generalized Lagrange structure of a deformed Minkowski space (DMS), , namely a (four-dimensional) generalization of the (local) space-time based on an energy-dependent “deformation” of the usual Minkowski geometry. In , local Lorentz invariance is naturally violated, due to the energy dependence of the deformed metric. Moreover, the generalized Lagrange structure of allows one to endow the deformed space-time with both curvature and torsion.


Share and Cite:

Mignani, R. , Cardone, F. and Petrucci, A. (2014) Generalized Lagrange Structure of Deformed Minkowski Spacetime. Natural Science, 6, 399-410. doi: 10.4236/ns.2014.66040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mattingly, D. (2005) Modern Tests of Lorentz Invariance. Living Reviews in Relativity, 8, 5.
http://www.livingreviews.org/lrr-2005-5
[2] Kostelecky, V.A. (1999, 2002, 2004) CPT and Lorentz Symmetry I, II, III. World Scientific, Singapore.
[3] Cardone, F. and Mignani, R. (2004) Energy and Geometry—An Introduction to Deformed Special Relativity. World Scientific, Singapore.
[4] Cardone, F. and Mignani, R. (2007) Deformed Spacetime—Geometrizing Interactions in Four and Five Dimensions. Springer, Heidelberg, Dordrecht.
http://dx.doi.org/10.1007/978-1-4020-6283-4
[5] Cardone, F., Mignani, R. and Petrucci, A. (2011) The Principle of Solidarity: Geometrizing Interactions. In: Dvoeglazov, V.V., Ed., Einstein and Hilbert: Dark Matter, Nova Science, Commack, 19.
[6] Mignani, R., Cardone, F. and Petrucci, A. (2013) El. J. Theor. Phys., 29, 1.
[7] Miron, R., Jannussis, A. and Zet, G. (2004) In Tsagas, Gr., Ed., Proc. Conf. Applied Differential Geometry—Gen. Rel. and the Workshop on Global Analysis, Differential Geometry and Lie Algebra, 2001, Geometry Balkan Press, 101.
[8] Miron, R. and Anastasiei, M. (1994) The Geometry of Lagrange Spaces: Theory and Applications. Kluwer, Alphen aan den Rijn.
[9] Miron, R., Hrimiuc, D., Shimada, H. and Sabau, S.V. (2002) The Geometry of Hamilton and Lagrange Spaces. Kluwer, Alphen aan den Rijn.
[10] Steenrod, N. (1951) The Topology of Fibre Bundles. Princeton University Press, Princeton.
[11] Cardone, F., Mignani, R. and Petrucci, A. (2012) Piezonuclear Reactions. Journal of Advanced Physics, 1, 3-36.
http://dx.doi.org/10.1166/jap.2012.1015

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.