[1]
|
Kulcsar, Z., Ememman, U., Wetzel, S.G., Bock, A., Goericke, S., Panagiotopoulos, V., Forsting, M., Ruefenacht, D.A. and Wanke, I. (2010) High-Profile Flow Diverter (Silk) Implantation in the Basilar Artery: Efficacy in the Treatment of Aneurysms and the Role of the Perforators. Stroke, 41, 1690-1696.
http://dx.doi.org/10.1161/STROKEAHA.110.580308
|
[2]
|
Cha, K.S., Balaras, E., Lieber, B.B., Sadasivan, C. and Wakhloo, A.K. (2007) Modeling the Interaction of Coils with the Local Blood Flow after Coil Embolization of Intracranial Aneurysms. Journal of Biomechanical Engineering, 129, 873-879. http://dx.doi.org/10.1115/1.2800773
|
[3]
|
Kim, M., Levy, E.I., Meng, H. and Hopkins, L.N. (2007) Quantification of Hemodynamic Changes Induced by Virtual Placement of Multiple Stents across a Wide-Necked Basilar Trunk Aneurysm. Neurosurgery, 61, 1305-1312; discussion 1312-1313. http://dx.doi.org/10.1227/01.neu.0000306110.55174.30
|
[4]
|
Appanaboyina, S., Mut, F., Lohner, R., Putman, C. and Cebral, J. (2009) Simulation of Intracranial Aneurysm Stenting: Techniques and Challenges. Computer Methods in Applied Mechanics and Engineering, 198, 3567-3582.
http://dx.doi.org/10.1016/j.cma.2009.01.017
|
[5]
|
Radaelli, A.G., Augsburger, L., Cebral, J.R., Ohta, M., Rufenacht, D.A., Balossino, R., Benndorf, G., Hose, D.R., Marzo, A., Metcalfe, R., Mortier, P., Mut, F., Reymond, P., Socci, L., Verhegghe, B. and Frangi, A.F. (2008) Reproducibility of Haemodynamical Simulations in a Subject-Specific Stented Aneurysm Model—A Report on the Virtual Intracranial Stenting Challenge 2007. Journal of Biomechanics, 41, 2069-2078.
http://dx.doi.org/10.1016/j.jbiomech.2008.04.035
|
[6]
|
Anzai, H., Nakayama, T., Takeshima, Y. and Ohta, M. (2010) The Effect of 3D Visualization on Optimal Design for Strut Position of Intracranial Stent. Proceedings of the 3rd ASME 2010 Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels, and Minichannels, Montreal, August 2010, FEDSM-ICNMM-2010-30591.
|
[7]
|
Srinivas, K., Townsend, S., Lee, C.J., Nakayama, T., Ohta, M., Obayashi, S. and Yamaguchi, T. (2010) Two-Dimensional Optimization of a Stent for an Aneurysm. Journal of Medical Devices, 4, 021003.
http://dx.doi.org/10.1115/1.4001861
|
[8]
|
Nakayama, T., Jeong, S., Srinivas, K. and Ohta, M. (2010) Development of Stent Strut Pattern for Cerebral Aneurysm. Proceedings of the 3rd ASME 2010 Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels, and Minichannels, Montreal, August 2010, FEDSM-ICNMM-2010- 30592.
|
[9]
|
Anzai, H., Ohta, M., Falcone, J.-L. and Chopard, B. (2012) Optimization of Flow Diverters for Cerebral Aneurysms. Journal of Computational Science, 3, 1-7. http://dx.doi.org/10.1016/j.jocs.2011.12.006
|
[10]
|
http://www.palabos.org/
|
[11]
|
Succi, S. (2001) The Lattice Boltzmann Equation, For Fluid Dynamics and Beyond. Oxford University Press, Oxford.
|
[12]
|
Axner, L., Hoekstra, A.G., Jeays, A., Lawford, P., Hose, R. and Sloot, P.M.A. (2009) Simulations of Time Harmonic Blood Flow in the Mesenteric Artery: Comparing Finite Element and Lattice Boltzmann Methods. Biomedical Engineering Online, 8, 23. http://dx.doi.org/10.1186/1475-925X-8-23
|
[13]
|
Chopard, B., Ouared, R. and Rufenacht, D.A. (2006) A Lattice Boltzmann Simulation of Clotting in Stented Aneursysms and Comparison with Velocity or Shear Rate Reductions. Mathematics and Computers in Simulation, 72, 108-112. http://dx.doi.org/10.1016/j.matcom.2006.05.025
|
[14]
|
Harrison, S.E., Smith, S.M., Bernsdorf, J., Hose, D.R. and Lawford, P.V. (2007) Application and Validation of the Lattice Boltzmann Method for Modelling Flow-Related Clotting. Journal of Biomechanics, 40, 3023-3028.
http://dx.doi.org/10.1016/j.jbiomech.2007.01.026
|
[15]
|
He, X., Duckwiler, G. and Valentino, D.J. (2009) Lattice Boltzmann Simulation of Cerebral Artery Hemodynamics. Computers & Fluids, 38, 789-796. http://dx.doi.org/10.1016/j.compfluid.2008.07.006
|
[16]
|
Závodszky, G. and Paál, G. (2013) Validation of a Lattice Boltzmann Method Implementation for a 3D Transient Fluid Flow in an Intracranial Aneurysm Geometry. International Journal of Heat and Fluid Flow, 44, 276-283.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2013.06.008
|
[17]
|
Breuer, M., Bernsdorf, J., Zeiser, T. and Durst, F. (2000) Accurate Computations of the Laminar Flow Past a Square Cylinder Based on Two Different Methods: Lattice-Boltzmann and Finite-Volume. International Journal of Heat and Fluid Flow, 21, 186-196. http://dx.doi.org/10.1016/S0142-727X(99)00081-8
|
[18]
|
Geller, S., Krafczyk, M., Tolke, J., Turek, S. and Hron, J. (2006) Benchmark Computations Based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for Laminar Flows. Computers & Fluids, 35, 888-897.
http://dx.doi.org/10.1016/j.compfluid.2005.08.009
|
[19]
|
Hirabayashi, M., Ohta, M., Rufenacht, D.A. and Chopard, B. (2003) Characterization of Flow Reduction Properties in an Aneurysm Due to a Stent. Physical Review E, 68, Article ID: 021918.
http://dx.doi.org/10.1103/PhysRevE.68.021918
|
[20]
|
Ku, J.P., Elkins, C.J. and Taylor, C.A. (2005) Comparison of CFD and MRI Flow and Velocities in an In Vitro Large Artery Bypass Graft Model. Annals of Biomedical Engineering, 33, 257-269.
http://dx.doi.org/10.1007/s10439-005-1729-7
|
[21]
|
Kirkpatrick, S. (1984) Optimization by Simulated Annealing—Quantitative Studies. Journal of Statistical Physics, 34, 975-986.
|
[22]
|
Johnson, D.S., Aragon, C.R., Mcgeoch, L.A. and Schevon, C. (1991) Optimization by Simulated Annealing—An Experimental Evaluation. 2. Graph-Coloring and Number Partitioning. Operations Research, 39, 378-406.
http://dx.doi.org/10.1287/opre.39.3.378
|
[23]
|
Bertsimas, D. and Tsitsiklis, J. (1992) Simulated Annealing. Statistical Science, 8, 10-15.
|
[24]
|
Harhalakis, G., Proth, J.M. and Xie, X.L. (1990) Manufacturing Cell Design Using Simulated Annealing—An Industrial Application. Journal of Intelligent Manufacturing, 1, 185-191. http://dx.doi.org/10.1007/BF01572637
|
[25]
|
Shim, P.Y. and Manoochehri, S. (1997) Generating Optimal Configurations in Structural Design Using Simulated Annealing. International Journal for Numerical Methods in Engineering, 40, 1053-1069.
http://dx.doi.org/10.1002/(SICI)1097-0207(19970330)40:6<1053::AID-NME97>3.0.CO;2-I
|
[26]
|
Liou, T.-M. and Li, Y.-C. (2008) Effects of Stent Porosity on Hemodynamics in a Sidewall Aneurysm Model. Journal of Biomechanics, 41, 1174-1183. http://dx.doi.org/10.1016/j.jbiomech.2008.01.025
|
[27]
|
Augsburger, L., Farhat, M., Reymond, P., Fonck, E., Kulcsar, Z., Stergiopulos, N. and Rufenacht, D.A. (2009) Effect of Flow Diverter Porosity on Intraaneurysmal Blood Flow. Clinical Neuroradiology-Klinische Neuroradiologie, 19, 204-214. http://dx.doi.org/10.1007/s00062-009-9005-0
|
[28]
|
Yu, C.H., Matsumoto, K., Shida, S., Kim, D.J. and Ohta, M. (2012) A Steady Flow Analsys on a Cerebral Aneurysm Model with Several Stents for New Stent Design Using PIV. Journal of Mechanical Science and Technology, 26, 1333-1340. http://dx.doi.org/10.1007/s12206-012-0322-x
|
[29]
|
Ku, D.N., Giddens, D.P., Zarins, C.K. and Glagov, S. (1985) Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation—Positive Correlation between Plaque Location and Low and Oscillating Shear-Stress. Arteriosclerosis, 5, 293-302. http://dx.doi.org/10.1161/01.ATV.5.3.293
|
[30]
|
Cebral, J.R., Mut, F., Weir, J. and Putman, C.M. (2011) Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture. American Journal of Neuroradiology, 32, 264-270. http://dx.doi.org/10.3174/ajnr.A2274
|
[31]
|
Shimogonya, Y., Ishikawa, T., Imai, Y., Matsuki, N. and Yamaguchi, T. (2009) Can Temporal Fluctuation in Spatial wall Shear Stress Gradient Initiate a Cerebral Aneurysm? A Proposed Novel Hemodynamic Index, the Gradient Oscillatory Number (GON). Journal of Biomechanics, 42, 550-554. http://dx.doi.org/10.1016/j.jbiomech.2008.10.006
|
[32]
|
Isoda, H., Hirano, M., Takeda, H., Kosugi, T., Alley, M.T., Markl, M., Pelc, N.J. and Sakahara, H. (2006) Visualization of Hemodynamics in a Silicon Aneurysm Model Using Time-Resolved, 3D, Phase-Contrast MRI. American Journal of Neuroradiology, 27, 1119-1122.
|
[33]
|
Liou, T.M., Li, Y.-C. and Juan, W.-C. (2007) Numerical and Experimental Studies on Pulsatile Flow in Aneurysms Arising Laterally from a Curved Parent Vessel at Various Angles. Journal of Biomechanics, 40, 1268-1275.
http://dx.doi.org/10.1016/j.jbiomech.2006.05.024
|
[34]
|
Cebral, J.R., Castro, M.A., Appanaboyina, S., Putman, C.M., Millan, D. and Frangi, A.F. (2005) Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity. IEEE Transactions on Medical Imaging, 24, 457-467. http://dx.doi.org/10.1109/TMI.2005.844159
|
[35]
|
Valencia, A., Zarate, A., Galvez, M. and Badilla, L. (2006) Non-Newtonian Blood Flow Dynamics in a Right Internal Carotid Artery with a Saccular Aneurysm. International Journal for Numerical Methods in Fluids, 50, 751-764.
http://dx.doi.org/10.1002/fld.1078
|
[36]
|
Fisher, C. and Rossmann, J.S. (2009) Effect of Non-Newtonian Behavior on Hemo-dynamics of Cerebral Aneurysms. Journal of Biomechanical Engineering, 131, 091004. http://dx.doi.org/10.1115/1.3148470
|