The Effect of Renal Sympathetic Denervation (RSD) in Atrial Fibrillation (AF) Inducibility

DOI: 10.4236/wjcd.2014.44020   PDF   HTML     3,401 Downloads   5,356 Views  


Objective: The purpose of this study is to investigate the effects of renal sympathetic nerve stimulation (RSN-S) and ablation (RSN-A) on atrial effective refractory period (ERP) and AF in normal canine heart. Atrial Fibrillation (AF) is a complex disease and one of the most frequent arrhythmias, especially in elderly patients. Multiple mechanisms are involved including interaction between the autonomic nervous system (ANS), electrophysiological properties of the atria, and vulnerability for AF. Cardiac overload increases the incidence of AF. In lone AF the triggers are in the pulmonary veins. AF caused by underlying disease has different mechanism. Atrial fibrillation (AF) is associated with activity of renin-angiotensin-aldosterone system (RAAS). Reduction in renal nor-adrenaline spillover could be achieved after renal sympathetic denervation (RSD). Methods: 1) Establish of atrial fibrillation model; 2) Ventricular rate analysis of AF; 3) Statistical analysis. Results: 1) The establishment of atrial fibrillation model; 2) Inducibility and duration of AF; 3) The changes of AERP dispersion. Conclusion: Left RSN-S shortened left atrial ERP, increased ERP dispersion, but did not change right atrial ERP. Bilateral RSN-A produced significant prolongation in both atrial ERP, but did not affect ERP dispersion. The on time of RD effect is at 4 hrs after RD procedure and the RD effect on AF will last for 20 hrs after RD procedure.

Share and Cite:

Upadhyay, I. , Hu, J. , Na, W. , Kun, W. , Linuer, T. , Li, Z. ,  , A. and Hou, Y. (2014) The Effect of Renal Sympathetic Denervation (RSD) in Atrial Fibrillation (AF) Inducibility. World Journal of Cardiovascular Diseases, 4, 138-145. doi: 10.4236/wjcd.2014.44020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Zhao, Q.Y., Yu, S.B., Zou, M.F., Dai, Z.X., Wang, X.L., Xiao, J.P. and Huang, C.X. (2012) Effect of Renal Sympathetic Denervation on the Inducibility of Atrial Fibrillation during Rapid Atrial Pacing. Journal of Interventional Cardiac Electrophysiology, 35, 119-125.
[2] Wijffels, M.C., Kirchhof, C.J., Dorland, R. and Allessie, M.A. (1995) Atrial Fibrillation Begets Atrial Fibrillation. A Study in Awake Chronically Instrumented Goats. Circulation, 92, 1954-1968.
[3] Everett, T.H., Li, H., Mangrum, J.M., McRury, I.D., Mitchell, M.A., Redick, J.A., et al. (2000) Electrical, Morphological, and Ultrastructural Remodeling and Reverse Remodeling in a Canine Model of Chronic Atrial Fibrillation. Circulation, 102, 1454-1460.
[4] Ausma, J., Wijffels, M., Thone, F., Wouters, L., Allessie, M. and Borgers, M. (1997) Structural Changes of Atrial Myocardium Due to Sustained Atrial Fibrillation in the Goat. Circulation, 96, 3157-3163.
[5] Tsai, C.T., Lai, L.P., Lin, J.L., Chiang, F.T., Hwang, J.J., Ritchie, M.D., et al. (2004) Renin-Angiotensin System Gene Polymorphisms and Atrial Fibrillation. Circulation, 109, 1640-1646.
[6] Goette, A., Staack, T., Rocken, C., Arndt, M., Geller, J.C., Huth, C., et al. (2000) Increased Expression of Extracellular Signal Regulated Kinase and Angiotensin-Converting Enzyme in Human Atria during Atrial Fibrillation. Journal of the American College of Cardiology, 35, 1669-1677.
[7] Healey, J.S., Baranchuk, A., Crystal, E., Morillo, C.A., Garfinkle, M., Yusuf, S., et al. (2005) Prevention of Atrial Fibrillation with Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: A Meta-Analysis. Journal of the American College of Cardiology, 45, 1832-1839.
[8] Ehrlich, J., Hohnloser, S. and Nattel, S. (2006) Role of Angiotensin System and Effects of its Inhibition in Atrial Fibrillation: Clinical and Experimental Evidence. European Heart Journal, 27, 512-518.
[9] Kumagai, K., Nakashima, H., Urata, H., Gondo, N., Arakawa, K. and Saku, K. (2003) Effects of Angiotensin II type 1 Receptor Antagonist on Electrical and Structural Remodeling in Atrial Fibrillation. Journal of the American College of Cardiology, 41, 2197-2204.
[10] Elvan, A., Wylie, K. and Zipes, D.P. (1996) Pac-ing-Induced Chronic Atrial Fibrillation Impairs Sinus Node Function in Dogs. Electrophysiological Remodeling. Circulation, 94, 2953-2960.
[11] Nakashima, H., Kumagai, K., Urata, H., Gondo, N., Ideishi, M. and Arakawa, K. (2000) Angiotensin II Antagonist Prevents Electrical Remodeling in Atrial Fibrillation. Circulation, 101, 2612-2617.
[12] Chiou, C.W., Eble, J.N. and Zipes, D.P. (1997) Efferent Vagal Innervation of the Canine Atria and Sinus and Atrioventricular Nodes the Third Fat Pad. Circulation, 95, 2573-2584.
[13] Schauerte, P., Scherlag, B.J., Pitha, J., Scherlag, M.A., Reynolds, D., Lazzara, R., et al. (2000) Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation. Circulation, 102, 2774-2780.
[14] Tan, A.Y., Zhou, S., Ogawa, M., Song, J., Chu, M., Li, H., et al. (2008) Neural Mechanisms of Paroxysmal Atrial Fibrillation and Paroxysmal Atrial Tachycardia in Ambulatory Canines. Circulation, 118, 916-925.
[15] Lu, Z., Scherlag, B.J., Lin, J., Niu, G., Fung, K., Zhao, L., et al. (2008) Atrial Fibrillation Begets Atrial Fibrillation Autonomic Mechanism for Atrial Electrical Remodeling Induced by Short-Term Rapid Atrial Pacing. Circulation: Arrhythmia and Electrophysiology, 1, 184-192.
[16] Goette, A., Honeycutt, C. and Langberg, J.J. (1996) Electrical Remodeling in Atrial Fibrillation: Time Course and Mechanisms. Circulation, 94, 2968-2974.
[17] Tieleman, R.G., De Langen, C., Van Gelder, I.C., de Kam, P.J., Grandjean, J., Bel, K.J., et al. (1997) Verapamil Reduces Tachycardia-Induced Electrical Remodeling of the Atria. Circulation, 95, 1945-1953.
[18] Touyz, R.M., Sventek, P., Lariviere, R., Thibault, G., Fareh, J., Reudelhuber, T., et al. (1996) Cytosolic Calcium Changes Induced by Angiotensin II in Neonatal Rat Atrial and Ventricular Cardiomyocytes Are Mediated via Angiotensin II Subtype 1 Receptors. Hypertension, 27, 1090-1096.
[19] Laszlo, R., Bentz, K., Konior, A., Eick, C., Schreiner, B., Kettering, K., et al. (2010) Effects of Selective Mineralocorticoid Receptor Antagonism on Atrial ion Currents and Early Ionic Tachycardiainduced Electrical Remodelling in Rabbits. Naunyn-Schmiedeberg’s Archives of Pharmacology, 382, 347-356.
[20] Xiao, H.D., Fuchs, S., Campbell, D.J., Lewis, W., Dudley, S.C., Kasi, V.S., et al. (2004) Mice with Cardiac-Restricted Angiotensin-Converting Enzyme (ACE) Have Atrial Enlargement, Cardiac Arrhythmia, and Sudden Death. American Journal of Pathology, 165, 1019-1032.
[21] Nattel, S. and Opie, L.H. (2006) Con-troversies in Atrial Fibrillation. Lancet, 367, 262-272.
[22] Wyse, D.G., Waldo, A.L., DiMarco, J.P., Domanski, M.J., Rosenberg, Y., Schron, E.B., et al. (2002) A Comparison of Rate Control and Rhythm Control in Patients with Atrial Fibrillation. New England Journal of Medicine, 347, 1825-1833.
[23] Haissaguerre, M., Jais, P., Shah, D.C., Takahashi, A., Hocini, M., Quiniou, G., et al. (1998) Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339, 659-666.
[24] Shah, A.J., Liu, X., Jadidi, A.S. and Haïssaguerre, M. (2010) Early Management of Atrial Fibrillation: From Imaging to Drugs to Ablation. Natural Reviews Cardiology, 7, 345-354.
[25] Dewire, J. and Calkins, H. (2010) State-of-the-Art and Emerging Technologies for Atrial Fibrillation Ablation. Natural Reviews Cardiology, 7, 129-138.
[26] Oral, H., Chugh, A., Yoshida, K., Sarrazin, J.F., Kuhne, M., Crawford, T., et al. (2009) A Randomized Assessment of the Incremental Role of Ablation of Complex Fractionated Atrial Electrograms after Antral Pulmonary Vein Isolation for Longlasting Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 53, 782-789.
[27] Pokushalov, E., Romanov, A., Shugayev, P., Artyomenko, S., Shirokova, N., Turov, A., et al. (2009) Selective Ganglionated Plexi Ablation for Paroxysmal Atrial Fibrillation. Heart Rhythm, 6, 1257-1264.
[28] Katritsis, D.G., Giazitzoglou, E., Zografos, T., Pokushalov, E., Po, S.S. and Camm, A.J. (2011) Rapid Pulmonary Vein Isolation Combined with Autonomic Ganglia Modification: A Randomized Study. Heart Rhythm, 8, 672-678.
[29] Po, S.S., Nakagawa, H. and Jackman, W.M. (2009) Localization of Left Atrial Ganglionated Plexi in Patients with Atrial Fibrillation. Journal of Cardiovascular Electro-physiology, 20, 1186-1189.
[30] Kron, J., Kasirajan, V., Wood, M.A., Kowalski, M., Han, F.T. and Ellenbogen, K.A. (2010) Management of Recurrent Atrial Arrhythmias after Minimally Invasive Surgical Pulmonary Vein Isolation and Ganglionic Plexi Ablation for Atrial Fibrillation. Heart Rhythm, 7, 445-451.
[31] Oh, S., Zhang, Y., Bibevski, S., Marrouche, N.F., Natale, A. and Mazgalev, T.N. (2006) Vagal Denervation and Atrial Fibrillation Inducibility: Epicardial Fat Pad Ablation Does Not Have Long-Term Effects. Heart Rhythm, 3, 701-708.
[32] Zhao, Q.Y., Huang, H., Zhang, S.D., Tang, Y.H., Wang, X., Zhang, Y.G., et al. (2010) The Relation between Atrial Remodeling and Inducibility of Atrial Fibrillation after Epicardial Ganglionic Plexi Ablation. Europace, 12, 805-810.
[33] Krum, H., Schlaich, M., Whitbourn, R., Sobotka, P.A., Sadowski, J., Bartus, K., et al. (2009) Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Multicentre Safety and Proof-of-Principle Cohort Study. Lancet, 373, 1275-1281.
[34] Esler, M.D., Krum, H., Sobotka, P.A., Schlaich, M.P., Schmieder, R.E. and Böhm, M. (2010) Symplicity HTN-2 Investigators. Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Randomised Controlled Trial. Lancet, 376, 1903-1909.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.