Which Working Memory Components Predict Fluid Intelligence: The Roles of Attention Control and Active Buffer Capacity

DOI: 10.4236/psych.2014.55043   PDF   HTML     4,500 Downloads   6,024 Views   Citations


This study tested which of two crucial mechanisms of working memory (WM): attention control, consisting of focusing attention on the proper task-set as well as blocking distraction, and the active buffer capacity, related to the number of chunks that can be actively maintained, plays a more important role in WM’s contribution to fluid intelligence. In the first study, the antisaccade task was used, the standard measure of attention control, in a modified variant which resulted in scores less sensitive to individual differences in the active buffer capacity, in comparison to the standard variant. In effect, attention control became a weak predictor of Gf, explaining less than one third of its variance accounted for by the capacity. In the second study, a variant of another attention control test, the Stroop task, was applied, which minimized the load on capacity, and no significant contribution of this task to Gf was found. Thus, when contribution of control and capacity were unconfounded, attention control mechanisms of WM contributed to fluid intelligence to a lesser extent than did the mechanisms related to the active buffer of WM.

Share and Cite:

Chuderski, A. (2014). Which Working Memory Components Predict Fluid Intelligence: The Roles of Attention Control and Active Buffer Capacity. Psychology, 5, 328-339. doi: 10.4236/psych.2014.55043.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time Constraints and Resource Sharing in Adults’ Working Memory Spans. Journal of Experimental Psychology: General, 133, 83-100. http://dx.doi.org/10.1037/0096-3445.133.1.83
[2] Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). Review of Visual Memory Capacity: Beyond Individual Items and toward Structured Representations. Journal of Vision, 11, 1-34. http://dx.doi.org/10.1167/11.5.4
[3] Buehner, M., Krumm, S., & Pick, M. (2005). Reasoning = Working Memory ≠ Attention. Intelligence, 33, 251-272.
[4] Cho, S., Holyoak, K. J., & Cannon, T. D. (2007). Analogical Reasoning in Working Memory: Resources Shared among Relational Integration, Interference Resolution, and Maintenance. Memory and Cognition, 35, 1445-1455.
[5] Chuah, Y. M. L., & Maybery, M. T. (1999). Verbal and Spatial Short-Term Memory: Common Sources of Developmental Change? Journal of Experimental Child Psychology, 73, 7-44. http://dx.doi.org/10.1006/jecp.1999.2493
[6] Chuderska, A., & Chuderski, A. (2013). Two Facets of Cognitive Control in Analogical Mapping: The Role of Semantic Interference Resolution and Goal-Driven Structure Selection. Thinking & Reasoning.
[7] Chuderski, A., Andrelczyk, K., & Smolen, T. (2013). An Oscillatory Model of Individual Differences in Working Memory Capacity and Relational Integration. Cognitive Systems Research, 24, 87-95.
[8] Chuderski, A., Taraday, M., Necka, E., & Smoleń, T. (2012). Storage Capacity Explains Fluid Intelligence while Executive Control Does Not. Intelligence, 40, 278-295. http://dx.doi.org/10.1016/j.intell.2012.02.010
[9] Colflesh, G. J. H., & Conway, A. R. A. (2007). Individual Differences in Working Memory Capacity and Divided Attention in Dichotic Listening. Psychonomic Bulletin & Review, 14, 699-703. http://dx.doi.org/10.3758/BF03196824
[10] Colom, R., Abad, F. J., Quiroga, M. A., Shih, P. C., & Flores-Mendoza, C. (2008). Working Memory and Intelligence Are Highly Related Constructs but Why? Intelligence, 36, 584-606. http://dx.doi.org/10.1016/j.intell.2008.01.002
[11] Colom, R., Abad, F. J., Rebollo, I., & Shih, P. C. (2005). Memory Span and General Intelligence: A Latent Variable Approach. Intelligence, 33, 623-642. http://dx.doi.org/10.1016/j.intell.2005.05.006
[12] Colom, R., Rebollo, I., Abad, F. J., & Shih, P. C. (2006). Complex Span Tasks, Simple Span Tasks, and Cognitive Abilities: A Re-Analysis of Key Studies. Memory & Cognition, 34, 158-171. http://dx.doi.org/10.3758/BF03193395
[13] Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. (2002). A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence. Intelligence, 30, 163-183. http://dx.doi.org/10.1016/S0160-2896(01)00096-4
[14] Conway, A. R. A., Getz, S. J., Macnamara, B., & Engel de Abreu, P. M. J. (2011). Working Memory and Fluid Intelligence: A Multi-Mechanism View. In R. J. Sternberg, & S. B. Kaufman (Eds.), The Cambridge Handbook of Intelligence (pp. 394-418). Cambridge, UK: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511977244.021
[15] Cowan, N. (2001). The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity. Behavioral and Brain Sciences, 24, 87-114. http://dx.doi.org/10.1017/S0140525X01003922
[16] Cowan, N., Fristoe, N. M., Elliott, E. M., Brunner, R. P., & Saults, J. S. (2006). Scope of Attention, Control of Attention, and Intelligence in Children and Adults. Memory & Cognition, 34, 1754-1768. http://dx.doi.org/10.3758/BF03195936
[17] Cowan, N., Li, D., Moffitt, A., Becker, T. M., Martin, E. A., Saults, J. S., & Christ, S. E. (2011). A Neural Region of Abstract Working Memory. Journal of Cognitive Neuroscience, 23, 2852-2863. http://dx.doi.org/10.1162/jocn.2011.21625
[18] Coyle, T. R. (2003). A Review of the Worst Performance Rule: Evidence, Theory, and Alternative Hypotheses. Intelligence, 31, 567-587. http://dx.doi.org/10.1016/S0160-2896(03)00054-0
[19] Daneman, M., & Carpenter, P. A. (1980). Individual Differences in Working Memory and Reading. Journal of Verbal Learning and Verbal Behavior, 19, 450-466. http://dx.doi.org/10.1016/S0022-5371(80)90312-6
[20] Engle, R. W., & Kane, M. J. (2004). Executive Attention, Working Memory Capacity, and a Two-Factor Theory of Cognitive Control. In B. Ross (Ed.), The Psychology of Learning and Motivation, Vol. 44, (pp. 145-199). New York, NJ: Elsevier.
[21] Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway A. R. A. (1999). Working Memory, Short Term Memory, and General Fluid Intelligence: A Latent Variable Approach. Journal of Experimental Psychology: General, 128, 309-331.
[22] Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., & Hewitt, J. K. (2006). Not All Executive Functions Are Related to Intelligence. Psychological Science, 17, 172-179. http://dx.doi.org/10.1111/j.1467-9280.2006.01681.x
[23] Fukuda, K., & Vogel, E. K. (2011). Individual Differences in Recovery Time from Attentional Capture. Psychological Science, 22, 361-368. http://dx.doi.org/10.1177/0956797611398493
[24] Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete Capacity Limits in Visual Working Memory. Current Opinion in Neurobiology, 20, 177-182. http://dx.doi.org/10.1016/j.conb.2010.03.005
[25] Halford, G. S., Cowan, N., & Andrews, G. (2007). Separating Cognitive Capacity from Knowledge: A New Hypothesis. Trends in Cognitive Sciences, 11, 236-241. http://dx.doi.org/10.1016/j.tics.2007.04.001
[26] Heitz, R. P., & Engle, R. W. (2007). Focusing the Spotlight: Individual Differences in Visual Attention Control. Journal of Experimental Psychology: General, 136, 217-240. http://dx.doi.org/10.1037/0096-3445.136.2.217
[27] Hunt, E. B. (1980). Intelligence as an Information Processing Concept. The British Journal of Psychology, 71, 449-474.
[28] Kane, M. J., & Engle, M. J. (2002). The Role of Prefrontal Cortex in Working-Memory Capacity, Executive Attention, and General Fluid Intelligence: An Individual-Differences Perspective. Psychonomic Bulletin & Review, 9, 637-671.
[29] Kane, M. J., & Engle, R. W. (2003). Working-Memory Capacity and the Control of Attention: The Contributions of Goal Neglect, Response Competition, and Task Set to Stroop Interference. Journal of Experimental Psychology: General, 132, 47-70. http://dx.doi.org/10.1037/0096-3445.132.1.47
[30] Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The Generality of Working Memory Capacity: A Latent Variable Approach to Verbal and Visuo-Spatial Memory Span and Reasoning. Journal of Experimental Psychology: General, 133, 189-217. http://dx.doi.org/10.1037/0096-3445.133.2.189
[31] Kane, M. J., Sanchez, A., & Engle, R. W. (1999). Working Memory Capacity, Intelligence, and Goal Neglect in the Stroop Task. Poster presented at the Annual Meeting of the Psychonomic Society, Los Angeles, November 1999.
[32] Kyllonen, P. C., & Cristal, R. E. (1990). Reasoning Ability Is (Little More than) Working Memory Capacity?! Intelligence, 14, 389-433. http://dx.doi.org/10.1016/S0160-2896(05)80012-1
[33] Lewandowsky, S., Geiger, S. M., Morrell, D. B., & Oberauer, K. (2010). Turning Simple Span into Complex Span: Time for Decay or Interference from Distractors? Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 958-978. http://dx.doi.org/10.1037/a0019764
[34] Luck, S. J., & Vogel, E. K. (1997). The Capacity of Visual Working Memory for Features and Conjunctions. Nature, 390, 279-281. http://dx.doi.org/10.1038/36846
[35] Lustig, C., May, C. P., & Hasher, L. (2001). Working Memory Span and the Role of Proactive Interference. Journal of Experimental Psychology: General, 130, 199-207. http://dx.doi.org/10.1037/0096-3445.130.2.199
[36] MacLeod, C. M. (1991). Half a Century of a Research on the Stroop Effects: An Integrative Review. Psychological Bulletin, 109, 163-203. http://dx.doi.org/10.1037/0033-2909.109.2.163
[37] Markman, A., & Gentner, D. (1993). Structural Alignment during Similarity Comparisons. Cognitive Psychology, 25, 431-467. http://dx.doi.org/10.1006/cogp.1993.1011
[38] Morrison, R. G., Doumas, L. A. A., & Richland, L. E. (2012). A Computational Account of the Development of Analogical Reasoning: The Importance of Inhibitory Control in Working Memory. Developmental Science, 14, 516-529.
[39] Oberauer, K., Schultze, R., Wilhelm, O., & Süß, H.-M. (2005). Working Memory and Intelligence—Their Correlation and Their Relation: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 61-65.
[40] Oberauer, K., Süß, H.-M., Wilhelm, O., & Sander, N. (2007). Individual Differences in Working Memory Capacity and Reasoning Ability. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in Working Memory (pp. 49-75). Oxford: Oxford University Press.
[41] Orzechowski, J., & Chuderski, A. (2007). Test Analogii Obrazkowych [A Figural Analogies Test]. Unpublished manuscript, Krakow: Jagiellonian University.
[42] Raven, J. C., Court, J. H., & Raven J. (1983). Manual for Raven’s Progressive Matrices and Vocabulary Scales (Section 4: Advanced Progressive Matrices). London: H. K. Lewis.
[43] Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to Measure Working Memory Capacity in the Change Detection Paradigm. Psychonomic Bulletin & Review, 18, 324-330. http://dx.doi.org/10.3758/s13423-011-0055-3
[44] Salthouse, T. (2005). Relations between Cognitive Abilities and Measures of Executive Functioning. Neuropsychology, 19, 532-545. http://dx.doi.org/10.1037/0894-4105.19.4.532
[45] Schmiedek, F., Hildebrandt, A., Lovdén, M., Wilhelm, O., & Lindenberger, U. (2009). Complex Span versus Updating Tasks of Working Memory: The Gap Is Not That Big. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1089-1096. http://dx.doi.org/10.1037/a0015730
[46] Schweizer, K. (2010). The Relationship of Attention and Intelligence. In A. Gruszka, G. Matthiews, & B. Szymura (Eds.), Handbook of Individual Differences in Cognition: Attention, Memory, and Executive Control (pp. 247-262). New York: Springer. http://dx.doi.org/10.1007/978-1-4419-1210-7_15
[47] Süß, H. M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working Memory Capacity Explains Reasoning Ability—And a Little Bit More. Intelligence, 30, 261-288. http://dx.doi.org/10.1016/S0160-2896(01)00100-3
[48] Unsworth, N., & Engle, R. W. (2007a). On the Division of Short-Term and Working Memory: An Examination of Simple and Complex Span and Their Relation to Higher Order Abilities. Psychological Bulletin, 133, 1038-1066.
[49] Unsworth, N., & Engle, R. W. (2007b). The Nature of Individual Differences in Working Memory Capacity: Active Maintenance in Primary Memory and Controlled Search from Secondary Memory. Psychological Review, 114, 104-132.
[50] Unsworth, N., & Spillers, G. J. (2010). Working Memory Capacity: Attention, Memory, or Both? A Direct Test of the Dual-Component Model. Journal of Memory and Language, 62, 392-406. http://dx.doi.org/10.1016/j.jml.2010.02.001
[51] Unsworth, N., Redick, T. S., Lakey, C. E., & Young, D. L. (2010). Lapses in Sustained Attention and Their Relation to Executive Control and Fluid Abilities: An Individual Differences Investigation. Intelligence, 38, 111-122.
[52] Unsworth, N., Schrock, J. C., & Engle, R. W. (2004). Working Memory Capacity and the Antisaccade Task: Individual Differences in Voluntary Saccade Control. Journal of Experimental Psychology: Learning, Memory, & Cognition, 30, 1302-1321. http://dx.doi.org/10.1037/0278-7393.30.6.1302
[53] Unsworth, N., Spillers, G. J., & Brewer, G. (2009). Examining the Relations among Working Memory Capacity, Attention Control, and Fluid Intelligence from a Dual-Component Framework. Psychology Science Quarterly, 51, 388-402.
[54] Van Der Werf, J., Jensen, O., Fries, P., & Medendorp, W. P. (2008). Gamma-Band Activity in Human Posterior Parietal Cortex Encodes the Motor Goal during Delayed Prosaccades and Antisaccades. Journal of Neuroscience, 28, 8397-8405.
[55] Vogel, E. K., & Machizawa, M. G. (2004). Neural Activity Predicts Individual Differences in Visual Working Memory Capacity. Nature, 428, 748-751. http://dx.doi.org/10.1038/nature02447
[56] Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural Measures Reveal Individual Differences in Controlling Access to Working Memory. Nature, 423, 500-503. http://dx.doi.org/10.1038/nature04171

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.