[1]
|
Pawlak, Z. (1982) Rough Sets. International Journal of Computer and Information Science, 11, 341-356. http://dx.doi.org/10.1007/BF01001956
|
[2]
|
Pawlak, Z. (1991) Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston. http://dx.doi.org/10.1007/978-94-011-3534-4
|
[3]
|
Kryszkiewicz, M. (1998) Rough Set Approach to Incomplete Information Systems. Information Sciences, 112, 39-49. http://dx.doi.org/10.1016/S0020-0255(98)10019-1
|
[4]
|
Abo-Tabl, E.A. (2013) Rough Sets and Topological Spaces Based on Similarity. International Journal of Machine Learning and Cybernetics, 4, 451-458. http://dx.doi.org/10.1007/s13042-012-0107-7
|
[5]
|
Slowinski, R. and Vanderpooten, D. (2000) A Generalized Definition of Rough Approximations Based on Similarity. IEEE Transactions on Knowledge and Data Engineering, 12, 331-336. http://dx.doi.org/10.1109/69.842271
|
[6]
|
Skowron, A. and Stepaniuk, J. (1996) Tolerance Approximation Spaces. Fundamenta Informaticae, 27, 245-253.
|
[7]
|
Zhang, H., Ouyang, Y. and Wangc, Z. (2009) Note on Generalized rough Sets Based on Reflexive and Transitive Relations. Information Sciences, 179, 471-473.
http://dx.doi.org/10.1016/j.ins.2008.10.009
|
[8]
|
Liu, G.L. and Zhu, W. (2008) The Algebraic Structures of Generalized Rough Set Theory. Information Sciences, 178, 4105-4113. http://dx.doi.org/10.1016/j.ins.2008.06.021
|
[9]
|
Yao Y.Y. (1998) Relational Interpretations of Neighborhood Operators and Rough Set Approximation Operators. Information Sciences, 111, 239-259. http://dx.doi.org/10.1016/S0020-0255(98)10006-3
|
[10]
|
Zhu, W. (2009) Relationship between Generalized Rough Sets Based on Binary Relation and Covering. Information Sciences, 179, 210-225.
http://dx.doi.org/10.1016/j.ins.2008.09.015
|
[11]
|
Liu, G.L. and Sai, Y. (2009) A Comparison of Two Types of Rough Sets Induced by Coverings. International Journal of Approximate Reasoning, 50, 521-528. http://dx.doi.org/10.1016/j.ijar.2008.11.001
|
[12]
|
Zhu, W. (2007) Topological Approaches to Covering Rough Sets. Information Sciences, 177, 1499-1508. http://dx.doi.org/10.1016/j.ins.2006.06.009
|
[13]
|
Zhu, W. (2009) Relationship among Basic Concepts in Covering-Based Rough Sets. Information Sciences, 179, 24782486.
http://dx.doi.org/10.1016/j.ins.2009.02.013
|
[14]
|
Polkowski, L. (2002) Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg. http://dx.doi.org/10.1007/978-3-7908-1776-8
|
[15]
|
Skowron, A. (1988) On Topology in Information System. Bulletin of Polish Academic Science and Mathematics, 36, 477-480.
|
[16]
|
Wiweger, A. (1988) On Topological Rough Sets. Bulletin of the Polish Academy of Sciences Mathematics, 37, 51-62.
|
[17]
|
Polkowski, L. (2001) On Fractals Defined in Information Systems via Rough Set Theory. Proceedings of the RSTGC-2001. Bulletin International Rough Set Society, 5, 163-166.
|
[18]
|
Kortelainen J. (1994) On Relationship between Modified Sets, Topological Spaces and Rough Sets. Fuzzy Sets and Systems, 61, 91-95. http://dx.doi.org/10.1016/0165-0114(94)90288-7
|
[19]
|
Skowron, A., Swiniarski, R. and Synak, P. (2005) Approximation Spaces and Information Granulation. Transactions on Rough Sets III: Lecture Notes in Computer Science, 3400, 175-189. http://dx.doi.org/10.1007/11427834_8
|
[20]
|
Jarvinen, J. and Kortelainen, J. (2007) A Unifying Study between Model-Like Operators, Topologies, and Fuzzy Sets. Fuzzy Sets and Systems, 158, 1217-1225. http://dx.doi.org/10.1016/j.fss.2007.01.011
|
[21]
|
Lashin, E., Kozae, A., Khadra, A.A. and Medhat, T. (2005) Rough Set Theory for Topological Spaces. International Journal of Approximate Reasoning, 40, 35-43.
http://dx.doi.org/10.1016/j.ijar.2004.11.007
|
[22]
|
Li, T.J., Yeung, Y. and Zhang, W.X. (2008) Generalized Fuzzy Rough Approximation Operators Based on Fuzzy Covering. International Journal of Approximate Reasoning, 48, 836-856. http://dx.doi.org/10.1016/j.ijar.2008.01.006
|
[23]
|
Qin, K. and Pei, Z. (2005) On the Topological Properties of Fuzzy Rough Sets. Fuzzy Sets and Systems, 151, 601-613. http://dx.doi.org/10.1016/j.fss.2004.08.017
|
[24]
|
Srivastava, A.K. and Tiwari, S.P. (2003) On Relationships among Fuzzy Approximation Operators, Fuzzy Topology, and Fuzzy Automata. Fuzzy Sets and Systems, 138, 197-204. http://dx.doi.org/10.1016/S0165-0114(02)00442-6
|
[25]
|
Rosenfeld, A. (1979) Digital topology. The American Mathematical Monthly, 86, 621-630. http://dx.doi.org/10.2307/2321290
|
[26]
|
Khalimsky, E.D., Kopperman, R. and Meyer, P.R. (1990) Computer Graphics and Connected Topologies on Finite Ordered Sets. Topology and Its Applications, 36, 1-17.
|
[27]
|
Kiselman, C.O. (2000) Digital Jordan Curve Theorems. Discrete Geometry for Computer Imagery (DGCI), 1953, 4656.
http://dx.doi.org/10.1007/3-540-44438-6_5
|
[28]
|
Slapal, J. (2013) Topological Structuring of the Digital Plane. Discrete Mathematics and Theoretical Computer Science, 15, 165-176.
|
[29]
|
Khalimsky, E.D., Kopperman, R. and Meyer, P.R. (1990) Boundaries in Digital Planes. Journal of Applied Mathematics and Stochastic Analysis, 3, 27-55. http://dx.doi.org/10.1155/S1048953390000041
|
[30]
|
Kong, T.Y., Kopperman, R. and Meyer, P.R. (1991) A Topological Approach to Digital Topology. The American Mathematical Monthly, 98, 901-917. http://dx.doi.org/10.2307/2324147
|
[31]
|
Kopperman, R., Meyer, P.R. and Wilson, R.G. (1991) A Jordan Surface Theorem for Three-Dimensional Digital Spaces. Discrete and Computational Geometry, 6, 155-161.
http://dx.doi.org/10.1007/BF02574681
|
[32]
|
Bai, Y., Han, X. and Prince, J.L. (2009) Digital Topology on Adaptive Octree Grids. Journal of Mathematical Imaging and Vision, 34, 165-184. http://dx.doi.org/10.1007/s10851-009-0140-7
|
[33]
|
Eckhardt, U. and Latecki, L.J. (2003) Topologies for the Digital Spaces Z2 and Z3. Computer Vision and Image Understanding, 90, 295-312. http://dx.doi.org/10.1016/S1077-3142(03)00062-6
|
[34]
|
Melin, E. (2007) Digital Surfaces and Boundaries in Khalimsky Spaces. Journal of Mathematical Imaging and Vision, 28, 169-177.
http://dx.doi.org/10.1007/s10851-007-0006-9
|
[35]
|
Slapal, J. (2003) Closure Operations for Digital Topology. Theoretical Computer Science, 305, 457-471. http://dx.doi.org/10.1016/S0304-3975(02)00708-9
|
[36]
|
Slapal, J. (2006) Digital Jordan Curves. Topology and Its Application, 153, 3255-3264.
|
[37]
|
Smyth, M.B. (1995) Semi-Metrics, Closure Spaces and Digital Topology. Theoretical Computer Science, 151, 257-276.
http://dx.doi.org/10.1016/0304-3975(95)00053-Y
|
[38]
|
Sierpenski, W. and Krieger, C. (1956) General Topology. University of Toronto, Toronto.
|
[39]
|
Alexandroff, P. (1937) Diskrete Raume. Matematicheskii Sbornik, 2, 501-519.
|
[40]
|
Birkhoff, G. (1937) Rings of Sets. Duke Mathematical Journal, 3, 383-548. http://dx.doi.org/10.1215/S0012-7094-37-00334-X
|
[41]
|
Marcus, D., Wyse, F., et al. (1970) A Special Topology for the Integers (Problem 5712). The American Mathematical Monthly, 77, 1119.
|