[1]
|
Nindjina, A.F., Aziz-Alaouib, M.A. and Cadivelb, M. (2006) Analysis of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes with Time Delay. Nonlinear Analysis: Real World Applications, 7, 1104-1118. http://dx.doi.org/10.1016/j.nonrwa.2005.10.003
|
[2]
|
Lu, Z. and Liu, X. (2008) Analysis of a Predator-Prey Model with Modified Holling-Tanner Functional Response and Time Delay. Nonlinear Analysis: Real World Applications, 9, 641-650. http://dx.doi.org/10.1016/j.nonrwa.2006.12.016
|
[3]
|
Holling, C.S. (1965) The Functional Response of Predator to Prey Density and Its Role in Mimicry and Population Regulation. Entomological Society of Canada, 45, 1-60. http://dx.doi.org/10.4039/entm9745fv
|
[4]
|
Braza, P.A. (2003) The Bifurcations Structure for the Holling-Tanner Model for Predator-Prey Interactions Using Two-Timing. SIAM Journal on Applied Mathematics, 63, 889-904. http://dx.doi.org/10.1137/S0036139901393494
|
[5]
|
Haquea, M. and Venturino, E. (2006) The Role of Transmissible Diseases in the Holling-Tanner Predator-Prey Model. Theoretical Population Biology, 70, 273-288. http://dx.doi.org/10.1016/j.tpb.2006.06.007
|
[6]
|
Saha, T. and Chakrabarti, C. (2009) Dynamical Analysis of a Delayed Ratio-Dependent Holling-Tanner Predator-Prey Model. Journal of Mathematical Analysis and Applications, 358, 389-402. http://dx.doi.org/10.1016/j.jmaa.2009.03.072
|
[7]
|
Peng, R. and Wang, M. (2007) Global Stability of the Equilibrium of a Diffusive Holling-Tanner Prey-Predator Model. Applied Mathematics Letters, 20, 664-670. http://dx.doi.org/10.1016/j.aml.2006.08.020
|
[8]
|
Yan, X. and Zhang, C. (2010) Asymptotic Stability of Positive Equilibrium Solution for a Delayed Prey-Predator Diffusion System. Applied Mathematical Modelling, 34, 184-199. http://dx.doi.org/10.1016/j.apm.2009.03.040
|
[9]
|
Peng, R. and Shi, J. (2009) Non-Existence of Non-Constant Positive Steady States of Two Holling Type-II Predator-Prey Systems: Strong Interaction Case. Journal of Differential Equations, 247, 866-886. http://dx.doi.org/10.1016/j.jde.2009.03.008
|
[10]
|
Ma, S. (2001) Traveling Wavefronts for Delayed Reaction—Diffusion Systems via a Fixed Point Theorem. Journal of Differential Equations, 171, 294-314. http://dx.doi.org/10.1006/jdeq.2000.3846
|
[11]
|
Ge, Z. and He, Y. (2009) Traveling Wavefronts for a Two-Species Predator-Prey System with Diffusion Terms and Stage Structure. Applied Mathematical Modelling, 33, 1356-1365. http://dx.doi.org/10.1016/j.apm.2007.09.037
|
[12]
|
Wu, J. and Zou, X. (2001) Traveling Wave Fronts of Reaction—Diffusion Systems with Delay. Journal of Dynamics and Differential Equations, 13, 651-687.
|
[13]
|
Zou, X. (2002) Delay Induced Traveling Wave Fronts in Reaction Diffusion Equations of KPP-Fisher Type. Journal of Computational and Applied Mathematics, 146, 309-321. http://dx.doi.org/10.1016/S0377-0427(02)00363-1
|
[14]
|
Canosa, J. (1973) On a Nonlinear Diffusion Equation Describing Population Growth. Journal of Research and Development, 17, 307-313. http://dx.doi.org/10.1147/rd.174.0307
|