History of Two Fundamental Principles of Physics: Least Action and Conservation of Energy


One of the aims most sought after by physics along the years has been to find a principle, the simplest possible, into which all natural phenomena would fit, and which would also allow the calculation of all past occurrences and principally future occurrences. Evidently, this is far from being reached and quite probably does not even exist. Nevertheless, an approximation to this ideal is always possible and the history of physics shows that some results in this direction have been achieved. Thus, the history of the principles of least action and conservation of energy presented in this paper explains the search for this ideal.

Share and Cite:

Oliveira, A. (2014). History of Two Fundamental Principles of Physics: Least Action and Conservation of Energy. Advances in Historical Studies, 3, 83-92. doi: 10.4236/ahs.2014.32008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Atkins, P. (2003). Galileo’s Finger. UK: Oxford University Press.
[2] Bernoulli, D. (1968). Hydrodynamics. New York: Dover Publication, Inc.
[3] Carnot, S. (1990). Réflexions sur la Puissance Motrice du Feu. Paris: éditions Jacques Gabay.
[4] Colin, L. G. (2003). From the Steam Machine to Absolute Zero. Mexico: Fondo de Cultura Editors.
[5] Coriolis, G. G. (1829). Du Calcul de l’Effet des Machines. Paris: Carilian-Goeury, Librairie.
[6] De Maupertuis, P. L. M. (1744). Accord des Différents Lois de la Nature qui Avaient Jusqu’ici Paru Incompatibles, Memoires de l’Academie des Sciences de Paris.
[7] Dugas, R. (1988). A History of Mechanics. New York: Dover Publications, Inc.
[8] Euler, L. (1952). Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietates Gaudentes (Vol. XXIV). Lausanne: Leonhardi Euleri Opera Omnia, s. I.
[9] Faraday, M. (2003). A Chemical History of a Candle. Rio de Janeiro: Contraponto Editors.
[10] Fourier, J. B. P. (1988). Théorie Analytique de la Chaleur. Paris: éditions Jacques Gabay.
[11] Gueroult, M. (1967). Leibniz, Dynamique et Metaphisique. Paris: Aubier Editions Montaigne.
[12] Gillispie, C. C., & Youschkevitch, A. P. (1979). Lazare Carnot Savant et sa Contribuition a la Théorie de l’Infinie Mathematique. Paris: Librairie Philosophique J. Vrin.
[13] Gusdorf, G. (1985). Le Savoir Romantique de la Nature. Paris: Payot.
[14] Harman, P. M. (1982). Energy, Force and Matter: The Conceptual Development of Nineteenth-Century Physics. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511665394
[15] Kuhn, T. S. (1996). The Essentian Tension. Mexico: Fondo de Cultura Editors.
[16] Lagrange, J. L. (1989). Mécanique Analytique. Paris: éditins Jacques Gabay.
[17] Locqueneux, R. (1996). Prehistoire & Histoire de la Thermodinamique Classique, Une Histoire de la Chaleur, no. 45. Paris: Librairie A. Blanchard.
[18] Lindsay, R. B. (1975). The Concept of Energy and its Early Historical Development (p. 12). Pennsylvania: Brown University.
[19] Moreira, I. C. (1998). Maupertuis and the Least Action Principle. Rio de Janeiro: Federal University Publication.
[20] Newton, I. (1952). Mathematical Principles of Natural Philosophy. London: Great Books of the Western World.
[21] Oliveira, A. R. E. (2013). A History of the Work Concept: From Physics to Economics. Netherlands: Springer.
[22] Oliveira, A. R. E. (2012). The Concept of Work in the Development of Applied Mechanics: Carnot and Coriolis. Invited talk in 32nd International Congress of the Italian Society of Historians of Physics and Astronomy, Rome.
[23] Plank, M. (1993). A Survey of Physical Theory. New York: Dover Publication, Inc.
[24] Truesdell, C. (1980). The Tragicomical History of Thermodynamics 1822-1854. New York: Springer-Verlag. http://dx.doi.org/10.1007/978-1-4613-9444-0

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.