[1]
|
Samuely, P., Reiffers, M., Flachbart, K., Akimenko, A.I., Yanson, I.K., Ponomarenko, N.M. and Paderno, Y.B. (1988) Point-Contact Spectroscopy of the Electron-Phonon Interaction in Single-Crystal LaB6. Journal of Low Temperature Physics, 71, 49-61.
|
[2]
|
Werheit, H., Filipov, V., Shitsevalova, N., Armbrüster, M. and Schwarz, U. (2012) Isotopic Phonon Effects in LaB6- LaB6 Do Not Possess Cubic Symmetry and Show a Non-Random Isotope Distribution. Journal of Physics: Condensed Matter, 24, 385405-1-14. http://dx.doi.org/10.1007/BF00115040
|
[3]
|
Mackinnon, I.D.R., Alarco, J.A. and Talbot, P.C. (2013) Metal Hexaborides with Sc, Ti or Mn. MNSMS, 3, 158-169. http://dx.doi.org/10.4236/mnsms.2013.34023
|
[4]
|
Ziman, J.M. (1972) Principles of the Theory of Solids. 2nd Edition, Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9781139644075
|
[5]
|
Myers, H.P. (2002) Introductory Solid State Physics. 2nd Edition, CRC Press, Boca Raton.
|
[6]
|
Springford, M., Ed. (1980) Electrons at the Fermi Surface. Cambridge University Press, Cambridge.
|
[7]
|
Grechnev, G.E., Baranovskiy, A.E., Fil, V.D., Ignatova, T.V., Shitsevalova, N.Yu., Filippov, V.B. and Eriksson, O. (2008) Electronic Structure and Bulk Properties of MB6 and MB12 Borides. Low Temperature Physics, 34, 921-929.
http://dx.doi.org/10.1063/1.3009588
|
[8]
|
Schell, G., Winter, H., Rietschel, H. and Gompf, F. (1982) Electronic Structure and Superconductivity in Metal Hexaborides. Physical Review B, 25, 1589-1599. http://dx.doi.org/10.1103/PhysRevB.25.1589
|
[9]
|
Hossain, F.M., Riley, D.P. and Murch, G.E. (2005) Ab initio Calculations of the Electronic Structure and Bonding Characteristics of LaB6. Physical Review B, 72, 235101-1-235101-5.
http://dx.doi.org/10.1103/PhysRevB.72.235101
|
[10]
|
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K. and Payne, M.C. (2005) First Principles Methods Using CASTEP. Zeitschrift fur Kristall, 220, 567-570. http://dx.doi.org/10.1524/zkri.220.5.567.65075
|
[11]
|
Ceperley, D.M. and Alder, B.J. (1980) Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters, 45, 566-569. http://dx.doi.org/10.1103/PhysRevLett.45.566
|
[12]
|
Perdew, J.P. and Zunger, A. (1981) Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical Review B, 23, 5048-5079. http://dx.doi.org/10.1103/PhysRevB.23.5048
|
[13]
|
Materials Studio CASTEP Online Help, CASTEP Occupancy Option Dialog. http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.htm
|
[14]
|
Grimme, S. (2006) Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. The Journal of Chemical Physics, 124, 034108. http://dx.doi.org/10.1063/1.2148954
|
[15]
|
Liang, J.-J. (2012) Accelrys, CASTEP Customer Support, Personal Communication.
|
[16]
|
Longuet-Higgins, H.C. and Roberts, M.D.V. (1954) The Electronic Structure of the Borides MB6. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 224, 336-347. http://dx.doi.org/10.1098/rspa.1954.0162
|
[17]
|
Yamazaki, M. (1957) Group Theoretical Treatment of the Energy Bands in Metal Borides MeB6. Journal of the Physical Society of Japan, 12, 1-6. http://dx.doi.org/10.1143/JPSJ.12.1
|
[18]
|
Urch, D.S. (1970) Orbitals and Symmetry. Penguin Books Ltd., Harmondsworth, Middlesex
|
[19]
|
Johnston, R.L. (2002) Atomic and Molecular Clusters. In: Betts, D.S., Ed., Masters Series in Physics and Astronomy, Taylor & Francis, London.
|
[20]
|
Fox, M.A. and Wade, K. (2003) Evolving Patterns in Boron Cluster Chemistry. Pure and Applied Chemistry, 75, 1315-1323. http://dx.doi.org/10.1351/pac200375091315
|
[21]
|
Zubarev, D.Y. and Boldyrev, A.I. (2007) Comprehensive Analysis of Chemical Bonding in Boron Clusters. Journal of Computational Chemistry, 28, 251-268. http://dx.doi.org/10.1002/jcc.20518
|
[22]
|
Hauser, A.W., Callegari, C. and Ernst, W.E. (2009) Level-Structure and Magnetic Properties from One-Electron Atoms to Clusters with Delocalized Electronic Orbitals: Shell Models for Alkali Trimers. In: Piecuch, P., et al., Eds., Advances in the Theory of Atomic and Molecular Systems—Dynamics, Spectroscopy, Clusters and Nanostructures, Springer, Berlin. http://dx.doi.org/10.1007/978-90-481-2985-0_10
|
[23]
|
Khanna, S.N. and Jena, P. (1992) Assembling Crystals from Clusters. Physical Review Letters, 69, 1664-1667.
http://dx.doi.org/10.1103/PhysRevLett.69.1664
|
[24]
|
Medel, V.M., Reveles, J.U., Khanna, S.N., Chauhan, V., Sen, P. and Castleman, A.W. (2011) Hund’s Rule in Superatoms with Transition Metal Impurities. Proceedings of the National Academy of Sciences of the United States of America, 108, 10062-10066. http://dx.doi.org/10.1073/pnas.1100129108
|
[25]
|
Castleman, A.W. and Khanna, S.N. (2009) Centennial Feature Article: Clusters, Superatoms, and Building Blocks of New Materials. The Journal of Physical Chemistry C, 113, 2664-2675. http://dx.doi.org/10.1021/jp806850h
|
[26]
|
Ashman, C., Khanna, S.N. and Pederson, M.R. (2002) Electron Attachment and Dynamics of Alkali Atoms in Al13X (X = Li–Cs) Clusters. Physical Review B, 66, 193408. http://dx.doi.org/10.1103/PhysRevB.66.193408
|
[27]
|
Weigend, F. and Ahlrichs, R. (2010) Quantum Chemical Treatments of Metal Clusters. Philosophical Transactions of the Royal Society A, 368, 1245-1263. http://dx.doi.org/10.1098/rsta.2009.0268
|
[28]
|
Coulson, C.A. (1963) Valence. 2nd Edition, Oxford University Press, London.
|
[29]
|
Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory. 2nd Edition, Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511524899
|
[30]
|
Perkins, P.G., Armstrong, D.R. and Breeze, A. (1975) On the Electronic Structure of Some Metal Hexaborides. Journal of Physics C: Solid State Physics, 8, 3558-3570. http://dx.doi.org/10.1088/0022-3719/8/21/026
|
[31]
|
Hasegawa, A. and Yanase, A. (1977) Energy Band Structure and Fermi Surface of LaB6 by a Self-Consistent APW Method. Journal of Physics F: Metal Physics, 7, 1245-1260. http://dx.doi.org/10.1088/0305-4608/7/7/023
|
[32]
|
Walch, P.F., Ellis, D.E. and Mueller, F.M. (1977) Energy Bands and Bonding in LaB6 and YB6. Physical Review B, 15, 1859-1866. http://dx.doi.org/10.1103/PhysRevB.15.1859
|
[33]
|
Johnson, R.W. and Daane, A.H. (1963) Electron Requirements of Bonds in Metal Borides. The Journal of Chemical Physics, 38, 425-432. http://dx.doi.org/10.1063/1.1733675
|
[34]
|
Ott, H.R., Gavilano, J.L., Ambrosini, B., Vonlanthen, P., Felder, E., Degiorgi, L., Young, D.P., Fisk, Z. and Zysler, R. (2000) Unusual Magnetism of Hexaborides. Physical B: Condensed Matter, 281, 423-427.
|
[35]
|
Denlinger, J.D., Clack, J.A., Allen, J.W., Gweon, G.-H., Poirier, D.M., Olson, C.G., Sarrao, J.L., Bianchi, A.D. and Fisk, Z. (2002) Bulk Band Gaps in Divalent Hexaborides. Physical Review Letters, 89, 157601. http://dx.doi.org/10.1103/PhysRevLett.89.157601
|
[36]
|
Souma, S., Komatsu, H., Takahashi, T., Kaji, R., Sasaki, T., Yokoo, Y. and Akimitsu, J. (2003) Electronic Band Structure and Fermi Surface of CaB6 Studied by Angle-Resolved Photoemission Spectroscopy. Physical Review Letters, 90, 027202. http://dx.doi.org/10.1103/PhysRevLett.90.027202
|
[37]
|
Kino, H., Aryasetiawan, F., van Schilfgaarde, M., Kotani, T., Miyake, T. and Terakura, K. (2002) GW Quasiparticle Band Structure of CaB6. Journal of Physics and Chemistry of Solids, 63, 1595-1597. http://dx.doi.org/10.1016/S0022-3697(02)00118-X
|
[38]
|
Gao, S.-P., Jiang, J., Cao, M., Zhu, J. and Yuan, J. (2004) Unoccupied Electronic States in CaB6 Studied by Density Functional Theory and EELS Measurements. Physical Review B, 69, 214419. http://dx.doi.org/10.1103/PhysRevB.69.214419
|
[39]
|
Helms, Z.M., Sen, P. and Mitas, L. (2005) Electronic Structure and Origin of Ferromagnetism in CaB6. http://arxiv.org/pdf/cond-mat/0509363.pdf
|
[40]
|
Maiti, K. (2008) Role of Vacancies and Impurities in the Ferromagnetism of Semiconducting CaB6. Europhysics Letters, 82, 67006.
|
[41]
|
Young, D.P., Hall, D., Torelli, M.E., Fisk, Z., Sarrao, J.L., Thompson, J.D., Ott, H.-R., Oseroff, S.B., Goodrich, R.G. and Zysler, R. (1999) High-Temperature Weak Ferromagnetism in a Low-Density Free-Electron Gas. Nature, 397, 412-414. http://dx.doi.org/10.1038/17081
|
[42]
|
Fisk, Z., Ott, H.R., Barzykin, V. and Gor’kov, L.P. (2002) The Emerging Picture of Ferromagnetism in the Divalent Hexaborides. Physica B: Condensed Matter, 312, 808-810.
|
[43]
|
Cho, B.K., Rhyee, J.-S., Oh, B.H., Jung, M.H., Kim, H.C., Yoon, Y.K., Kim, J.H. and Ekino, T. (2004) Formation of Midgap States and Ferromagnetism in Semiconducting CaB6. Physical Review B, 69, 113202. http://dx.doi.org/10.1103/PhysRevB.69.113202
|
[44]
|
Hasegawa, A. and Yanase, A. (1979) Electronic Structure of CaB6. Journal of Physics C: Solid State Physics, 12, 5431-5440. http://dx.doi.org/10.1088/0022-3719/12/24/014
|
[45]
|
Tromp, H.J., van Gelderen, P., Kelly, P.J., Brocks, G. and Bobbert, P.A. (2001) CaB6: A New Semiconducting Material for Spin Electronics. Physical Review Letters, 87, 016401.
http://dx.doi.org/10.1103/PhysRevLett.87.016401
|
[46]
|
Lee, B. and Wang, L.-W. (2005) Electronic Structure of Calcium Hexaborides. Applied Physics Letters, 87, 262509.
http://dx.doi.org/10.1063/1.2150578
|
[47]
|
Li, L.-H., Chen, L., Li, J.-Q. and Wu, L.-M. (2009) The First-Principles Study of Bulk CaB6 and the Field Emission of CaB6 Nanowires Using the HCTH Functional. The Journal of Physical Chemistry C, 113, 15384-15389.
http://dx.doi.org/10.1021/jp901965y
|
[48]
|
Xu, Y., Zhang, L., Cui, T., Li, Y., Xie, Y., Yu, W., Ma, Y. and Zou, G. (2007) First-Principles Study of the Lattice Dynamics, Thermodynamic Properties and Electron-Phonon Coupling of YB6. Physical Review B, 76, 214103.
http://dx.doi.org/10.1103/PhysRevB.76.214103
|
[49]
|
Xiao, L., Su, Y., Chen, H., Jiang, M., Liu, S., Hu, Z., Liu, R., Peng, P., Mu, Y. and Zhu, D. (2011) Study on the Electronic Structure and the Optical Performance of YB6 by the First-Principles Calculations. AIP Advances, 1, 022140.
|
[50]
|
Sholl, D.S. and Steckel, J.A. (2009) Density Functional Theory—A Practical Introduction. Wiley, Hoboken.
http://dx.doi.org/10.1002/9780470447710
|
[51]
|
Martin, R.M. (2005) Electronic Structure—Basic Theory and Practical Methods. Cambridge University Press, Cambridge.
|
[52]
|
Milman, V., Winkler, B., White, J.A., Pickard, C.J., Payne, M.C., Akhmatskaya, E.V. and Nobes, R.H. (2000) Electronic Structure, Properties, and Phase Stability of Inorganic Crystals: A Pseudopotential Plane-Wave Study. International Journal of Quantum Chemistry, 77, 895-910. http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
|
[53]
|
Kurth, S., Perdew, J.P. and Blaha, P. (1999) Molecular and Solid-State Tests of Density Functional Approximations: LSD, GGAs, and Meta-GGAs. International Journal of Quantum Chemistry, 75, 889-909. http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8
|
[54]
|
Rydberg, H. (2001) Nonlocal Correlations in Density Functional Theory. Department of Applied Physics, Chalmers University of Technology and Goteborg University, Gothenburg.
|
[55]
|
Mattsson, A.E., Schultz, P.A., Desjarlais, M.P., Mattsson, T.R. and Leung, K. (2005) Designing Meaningful Density Functional Theory Calculations in Materials Science—A Primer. Modelling and Simulation in Materials Science and Engineering, 13, R1-R31. http://dx.doi.org/10.1088/0965-0393/13/1/R01
|
[56]
|
Perdew, J.P., Ruzsinszky, A., Tao, J., Staroverov, V.N., Scuseria, G.E. and Csonka, G.I. (2005) Prescription for the Design and Selection of Density Functional Approximations: More Constraint Satisfaction with Fewer Fits. The Journal of Chemical Physics, 123, 062201. http://dx.doi.org/10.1063/1.1904565
|
[57]
|
Hafner, J.R., Wolverton, C. and Ceder, G. (2006) Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research. MRS Bulletin, 31, 659-668. http://dx.doi.org/10.1557/mrs2006.174
|
[58]
|
Sousa, S.F., Fernandes, P.A. and Ramos, M.J. (2007) General Performance of Density Functionals. The Journal of Chemical Physics A, 111, 10439-10452. http://dx.doi.org/10.1021/jp0734474
|
[59]
|
Janesko, B.G., Henderson, T.M. and Scuseria, G.E. (2009) Screened Hybrid Density Functionals for Solid-State Chemistry and Physics. Physical Chemistry Chemical Physics, 11, 443-454. http://dx.doi.org/10.1039/b812838c
|
[60]
|
Goerigk, L. and Grimme, S. (2001) A Thorough Benchmark of Density Functional Methods for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Physical Chemistry Chemical Physics, 13, 6670-6688.
http://dx.doi.org/10.1039/c0cp02984j
|
[61]
|
Cohen, A.J., Mori-Sanchez, P. and Yang, W. (2012) Challenges for Density Functional Theory. Chemical Reviews, 112, 289-320. http://dx.doi.org/10.1021/cr200107z
|
[62]
|
Lejaeghere, K., Speybroeck, V.V., Oost, G.V. and Cottenier, S. (2014) Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals. Critical Reviews in Solid State and Materials Sciences, 39, 1-24. http://dx.doi.org/10.1080/10408436.2013.772503
|
[63]
|
Tanaka, K. and Onuki, Y. (2002) Observation of 4f Electron Transfer from Ce to B6 in the Kondo Crystal CeB6 and Its Mechanism by Multi-Temperature X-Ray Diffraction. Acta Crystallographica Section B, 58, 423-436.
http://dx.doi.org/10.1107/S010876810102167X
|
[64]
|
Funahashi, S., Tanaka, K. and Iga, F. (2010) X-Ray Atomic Orbital Analysis of 4f and 5d Electron Configuration of SmB6 at 100, 165, 230 and 298K. Acta Crystallographica Section B, 66, 292-306.
http://dx.doi.org/10.1107/S0108768110009250
|
[65]
|
Ammar, A., Menetrier, M., Villesuzanne, A., Matar, S., Chevalier, B. and Etourneau, J. (2004) Investigation of the Electronic and Structural Properties of Potassium Hexaboride, KB6, by Transport, Magnetic Susceptibility, EPR and NMR Measurements, Temperature-Dependent Crystal Structure Determination, and Electronic Band Structure Calculations. Inorganic Chemistry, 43, 4974-4987. http://dx.doi.org/10.1021/ic049444c
|
[66]
|
Schmitt, K., Stuckl, C., Ripplinger, H. and Albert, B. (2001) Crystal and Electronic Structure of BaB6 in Comparison with CaB6 and Molecular [B6H6]-2 . Solid State Sciences, 3, 321-327. http://dx.doi.org/10.1016/S1293-2558(00)01091-8
|
[67]
|
Ishii, M., Aono, M., Muranaka, S. and Kawai, S. (1976) Raman Spectra of Metallic and Semiconducting Metal Hexaborides. Solid State Communications, 20, 437-440. http://dx.doi.org/10.1016/0038-1098(76)90544-5
|
[68]
|
Yahia, Z., Turrell, S., Turrell, G. and Mercurio, J.P. (1990) Infra-Red and Raman Spectra of Hexaborides: Force-Field Calculations and Isotopic Effects. Journal of Molecular Structure, 224, 303-312. http://dx.doi.org/10.1016/0022-2860(90)87025-S
|
[69]
|
Souma, S., Komoda, H., Iida, Y., Sato, T., Takahashi, T. and Kunii, S. (2005) Direct Observation of Superconducting Gap in YB6 by Ultrahigh-Resolution Photoelectron Spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 144-147, 503-506. http://dx.doi.org/10.1016/j.elspec.2005.01.125
|
[70]
|
Kunii, S., Kasuya, T., Kadowaki, K., Date, M. and Woods, S.B. (1984) Electron Tunneling into Superconducting YB6. Solid State Communications, 52, 659-661. http://dx.doi.org/10.1016/0038-1098(84)90728-2
|
[71]
|
Mott, S.N. (1974) Metal-Insulator Transitions. Taylor and Francis Ltd., London.
|