General Patterns of Spatial Distribution of the Integral Characteristics of Benthic Macrofauna of the Northwestern Pacific and Biological Structure of Ocean


Horizontal (geographic) and vertical (geonemic) spatial distribution of the integral properties of a large multispecies assemblage (1306 species of fish and invertebrate with body size ≥ 1 cm) from northwest Pacific sea bottom is investigated. There are total number and biomass, average animal size (mean individual weight), species diversity (Shannon’s index) and its components: species richness and evenness (Pielou’s index), i.e. generalized parameters describing benthic macrofauna as a whole. Correlations of these parameters with distance from shore and depth have been found as well as very weak latitudinal zonality display in the region. Even such well-known generalization as Humboldt-Wallace’s law and Bergman’s rule has no noticeable manifestations here. Earlier similar, but not identical, regularities were discovered in the northwest Pacific pelagic water layer. Collation of what there is in the two different sea zones results in new supplements to Zenkevich-Bogorov’s concept of biological structure of the ocean.

Share and Cite:

Volvenko, I. (2014) General Patterns of Spatial Distribution of the Integral Characteristics of Benthic Macrofauna of the Northwestern Pacific and Biological Structure of Ocean. Open Journal of Ecology, 4, 196-213. doi: 10.4236/oje.2014.44020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Zenkevich, L.A. (1948) The Biological Structure of the Ocean. Zoologicheskii Zhurnal, 27, 113-124.
[2] Bogorov, V.G. (1959) The Biological Structure of the Ocean. Doklady Akademii Nauk SSSR, 128, 819-822.
[3] Bogorov, V.G. (1970) The Biological Productivity of the Ocean and Features of Its Geographical Distribution. VoprosyGeografii, 84, 80-102.
[4] Bogorov, V.G. and Zenkevich, L.A. (1966) The Biological Structure of the Ocean. Ecology of Aquatic Organisms, Nauka Press, Moscow, 3-14.
[5] Humboldt, A. (1808) Ansichten der Naturmitwissenschaftlichen Erlauterungen. Cotta, Tubingen, 338 p.
[6] Wallace, A.R. (1878) Tropical Nature, and Other Essays. Macmillan, London, New York, 356 p.
[7] Fischer, A.G. (1960) Latitudinal Variation in Organic Diversity. Evolution, 14, 64-81.
[8] Pianka, E.R. (1966) Latitudinal Gradients in Species Diversity: A Review of Concepts. America/Natural, 100, 33-46.
[9] Hillebrand, H. (2004) On the Generality of the Latitudinal Diversity Gradient. America/Natural, 163, 192-211.
[10] Allen, A.P. and Gillooly, J.F. (2006) Assessing Latitudinal Gradients in Speciation Rates and Biodiversity at the Global Scale. Ecology Letters, 9, 947-954.
[11] Tittensor, D.P., Mora, C., Jetz, W., Lotze, H.K., Ricard, D., Berghe, E.V. and Worm, B. (2010) Global Patterns and Predictors of Marine Biodiversity across Taxa. Nature, 466, 1098-1103.
[12] Bergmann, C. (1847) Ueber die Verhaltnisse der Warmeokonomie der Thierezuihrer Grosse. Gottinger Studien, 3, 595-708.
[13] Lindsey, C.C. (1966) Body Sizes of Poikilotherm Vertebrates at Different Latitudes. Evolution, 20, 456-465.
[14] McDowal, R.M. (1994) On size and Growth in Freshwater Fish. Ecology of Freshwater Fish, 3, 67-79.
[15] Blackburn, T.M. and Gaston, K.J. (1996) Spatial Patterns in the Body Sizes of Bird Species in the New World. Oikos, 77, 436-446.
[16] Blackburn, T.M., Gaston, K.J. and Loder, N. (1999) Geographic Gradients in Body Size: A Clarification of Bergmann’s Rule. Diversity and Distributions, 5, 165-174.
[17] Ashton, K.G. (2004) Sensitivity of Intraspecific Latitudinal Clinic of Body Size for Tetrapods to Sampling, Latitude and Longitude? Integrative and Comparative Biology, 44, 403-412.
[18] Watt, C. and Salewski, V. (2011) Bergmann’s Rule Encompasses Mechanism: A Reply to Olalla-Tarraga. Oikos, 120, 1445-1447.
[19] Bogorov, V.G. (1967) Biomass of Zooplankton and Productive Areas in the Pacific Ocean, Geographical Zonation of the Ocean. In: Biology of the Pacific Ocean, Part 1, Plankton, Nauka Press, Moscow, 221-227.
[20] Koblents-Mishke, O.I., Volkovinsky, V.V. and Kabanova, Yu.G. (1970) Plankton Primary Production of the World Ocean, Scientific Committee on Oceanographic Research (SCOR) Symp. Sci. Explor. South Pacific, National Academy of Science, Washington DC, 183-193.
[21] Moiseev, P.A. (1969) The Living Resources of the World Ocean. Pischevaya Promyshlennost Press, Moscow.
[22] Moiseev, P.A. (1977) Fishery Production of the World Ocean and Its Utilization, Oceanology: Ocean Biology [Online], In: Vol. 2. Biological Productivity of the Ocean, Nauka Press, Moscow, 289-314 (English Translation). oceanologybiolog00nort/oceanologybiolog00nortdjvu.txt
[23] Shuntov, V.P. (1972) Seabirds and Biological Structure of the Ocean. Dalnevostochnoe KniznoyeIzdatelstvo Press, Vladivostok.
[24] Vinogradov, M.E. (1977) Oceanology. Ocean Biology. Vol. 1. Biological Structure of the Ocean. Nauka Press, Moscow.
[25] Zenkevich, L.A., Filatova, Z.A., Beliaev, G.M., Lukiyanova, T.A. and Suetova, I.A. (1971) Quantitative Distribution of the Zoobenthos in the World Ocean. Bull. Moip. Biol. Sect, 76, 27-33.
[26] Volvenko, I.V. (2007) Species Diversity of the Northwest Pacific Pelagic Macrofauna. Izv. TINRO, 149, 21-63.
[27] Volvenko, I.V. (2008) Species Diversity of Macrofauna Biomass in the Pelagic Northwest Pacific. Izv. TINRO, 153, 27-48.
[28] Volvenko, I.V. (2008) Species Richness of the Northwest Pacific Pelagic Macrofauna. Izv. TINRO, 153, 49-87.
[29] Volvenko, I.V. (2009) Species Structure Evenness of the Northwest Pacific Pelagic Macrofauna: 1. Number Equitability. Izv. TINRO, 156, 3-26.
[30] Volvenko, I.V. (2009) Species Structure Evenness of the Northwest Pacific Pelagic Macrofauna: 2. Biomass Equitability. Izv. TINRO, 156, 27-45.
[31] Volvenko, I.V. (2009) Abundance of the Northwest Pacific Pelagic Macrofauna: 1. Number. Izv. TINRO, 158, 3-39.
[32] Volvenko, I.V. (2009) Abundance of the Northwest Pacific Pelagic Macrofauna: 2. Biomass. Izv. TINRO, 158, 40-74.
[33] Volvenko, I.V. (2009) Average Individual Weight (Size) of Animals from Pelagic Macrofauna in the Northwest Pacific. Izv. TINRO, 158, 75-116.
[34] Volvenko, I.V. (2009) The Comparative Statuses of Far Eastern Seas and the Northwestern Pacific Based on the Range of Integral Characteristics of Pelagic Macrofauna. Russian Journal of Marine Biology, 35, 515-520.
[35] Volvenko, I.V. (2009) General Principles of Spatial-Temporal Variability of Integral Parameters for Pelagic Macrofauna in the Northwest Pacific. Izv. TINRO, 159, 43-69.
[36] Volvenko, I.V. (2009) General Patterns of Spatiotemporal Distribution of Pelagic Macrofauna Integrative Characteristics in the Northwest Pacific. Bulletin of the Far Eastern Brunch of the Russian Academy of Sciences, 3, 23-31.
[37] Volvenko, I.V. (2012) General Patterns of Spatial-Temporary Distribution of the Integral Characteristics of Pelagic Macrofauna of the North-Western Pacific and Biological Structure of Ocean. Journal of Earth Science and Engineering, 2, 1-14.
[38] Dontsova, Z.N. (1967) Sergey Semenovich Neustruev. Nauka, Moscow.
[39] Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423, 623-656.
[40] Margalef, R. (1958) Information Theory in Ecology. General Systems, 3, 36-71.
[41] McIntosh, R.P. (1967) An Index of Diversity and the Relations of Certain Concepts to Diversity. Ecology, 48, 392-404.
[42] Pielou, E.C. (1966) The Measurement of Diversity in Different Types of Biological Collections. Journal of Theoretical Biology, 13, 131-144.
[43] Neyman, A.A., Zezina, O.N. and Semenov, V.N. (1977) Benthic Fauna of the Shelf and Continental Slope. Oceanology: Ocean Biology, Vol. 1, Nauka Press, Moscow, 269-281.
[44] Shuntov, V.P. (2001) Biology of Far-Eastern Seas of Russia. Vol. 1, TINRO-Center, Vladivostok, 580 p.
[45] Borets, L.A. (1997) Bottom Ichthyocenoses of the Russian Shelf of Far Eastern Seas: Composition, Structure, Elements of Functioning, and Commercial Importance. TINRO-Center, Vladivostok, 217 p.
[46] Kindlmann, P., Schodelbauerova, I. and Dixon, A.F.G. (2007) Inverse Latitudinal Gradients in Species Diversity. Scaling Biodiversity. Cambridge University Press, Cambridge, 246-257.
[47] Pyron, R.A. and Burbrink, F.T. (2009) Can the Tropical Conservatism Hypothesis Explain Temperate Species Richness Patterns? An Inverse Latitudinal Biodiversity Gradient in the New World Snake Tribe Lampropeltini. Global Ecology and Biogeography, 18, 406-415.
[48] Kiel, S. and Nielsen, S.N. (2010) Quaternary Origin of the Inverse Latitudinal Diversity Gradient among Southern Chilean Mollusks. Geology, 38, 955-958.
[49] Rivadeneira, M.M., Thiel, M., Gonzalez, E.R. and Haye, P.A. (2011) An Inverse Latitudinal Gradient of Diversity of Peracarid Crustaceans along the Pacific Coast of South America: Out of the Deep South. Global Ecology and Biogeography, 20, 437-448.
[50] Ashton, K.G., Tracy, M.C. and Quieroz, A. (2000) Is Bergmann’s Rule Valid for Mammals? American Naturalist, 156, 390-415.
[51] Ashton, K.G. (2002) Do Amphibians Follow Bergmann’s Rule? Canadian Journal of Zoology, 80, 708-716.
[52] Meiri, S. and Dayan, T. (2003) On the Validity of Bergmann’s Rule. Journal of Biogeography, 30, 331-351.
[53] Martof, B.S. and Humphries, R.L. (1959) Geographical Variation in the Wood Frog Rana sylvatica. American Midland Naturalist, 61, 350-389.
[54] Mayr, E. (1963) Animal Species and Evolution. Belknap Press Harvard University Press, Cambridge, xiv, 797 p.
[55] McNab, B.K. (1971) On the Ecological Significance of Bergmann’s Rule. Ecology, 52, 845-854.
[56] Gotthard, K. (2001) Growth Strategies of Ectothermic Animals in Temperate Environments. In: Atkinson, D. and Thorndyke, M., Eds., Animal Developmental Ecology. BIOS Scientific Publishers, Oxford, 287-304.
[57] Blanckenhorn, W.U. and Demont, M. (2004) Bergmann and Converse Bergman Latitudinal Clines in Arthropods: Two Ends of a Continuum? Integrative and Comparative Biology, 44, 413-424.
[58] Neyman, A.A. (1965) Some Regularities of the Quantitative Distribution of Benthos on the North Pacific Shelves. Trudy Vsesoyuznogo Nauchno-Issledovatelskogo Instituta Morskogo Rybnogo Khozyaistva I Okeanografii, 57, 447-451.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.